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Linear and Nonlinear Control of Unmanned Rotorcraft
loannis A. Raptis

ABSTRACT

The main characteristic attribute of the rotorcraft is tke of rotary wings to produce the
thrust force necessary for motion. Therefore, rotorcraftehan advantage relative to fixed wing
aircraft because they do not require any relative velodtyroduce aerodynamic forces. Rotor-
craft have been used in a wide range of missions of civiliahraititary applications. Particular
interest has been concentrated in applications relateghiwls and rescue in environments that
impose restrictions to human presence and interference.

The main representative of the rotorcraft family is the ¢wster. Small scale helicopters retain
all the flight characteristics and physical principles d@ittull scale counterpart. In addition, they
are naturally more agile and dexterous compared to fuledgalicopters. Their flight capabilities,
reduced size and cost have monopolized the attention of tihealdned Aerial Vehicles research
community for the development of low cost and efficient aotanus flight platforms.

Helicopters are highly nonlinear systems with significayriaimic coupling. In general, they
are considered to be much more unstable than fixed wing Hiesrd constant control must be
sustained at all times. The goal of this dissertation istestigate the challenging design problem
of autonomous flight controllers for small scale helicoptex typical flight control system is
composed of a mathematical algorithm that produces theoppgpte command signals required
to perform autonomous flight.

Modern control techniques are model based, since the dientanchitecture depends on the

dynamic description of the system to be controlled. Thie@ple applies to the helicopter as well,

Xii
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therefore, the flight control problem is tightly connecteithwthe helicopter modeling. The heli-
copter dynamics can be represented by both linear and eanlmodels of ordinary differential
equations. Theoretically, the validity of the linear madislrestricted in a certain region around a
specific operating point. Contrary, nonlinear models pte\a global description of the helicopter
dynamics.

This work proposes several detailed control designs basédabiln dynamic representations
of small scale helicopters. The controller objective istfar helicopter to autonomously track
predefined position (or velocity) and heading referengedtaries. The controllers performance is

evaluated usini-Plang a realistic and commercially available flight simulator.

Xiii
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Chapter 1: Introduction

1.1 Motivation

The term Unmanned Aerial Vehicles (UAVS) is used to desauitygiloted flying vessels. This
term refers to vehicles that are remotely piloted or automasty controlled for the execution of a
predefined flight task. In both cases the key attribute ofetlvesicles is the absence of a human
pilot on board [106]. The applicability of UAVs is predomimtan the execution of potentially
dangerous flight missions or in cases where the small sizeeofehicle restricts the presence of
a pilot [70].

Potential usage of UAVs can be found in military and civilegpplications, although military
applications dominate the non-military ones. Civilian laggiions involve pipelines and power
lines inspection, surveillance, rescue missions, bordeo)y oil and natural gas research, fire
prevention, topography, agricultural applications [1@@jhmaking [70], traffic monitoring, flight
in hazardous environments (i.e. in a radioactive envirartjnd1].

UAVs are further classified into two main categories. The Giedegory are fixed-wing UAVs
(e.g., unmanned airplanes) that require relative veldoityhe production of aerodynamic forces
and a runaway for take-off and landing [105]. The secondgcajeare the rotorcraft UAVS. The
advantages of the rotorcraft unique flight capabilitiesehdrawn much attention through the years.
The primary characteristic attribute of the rotorcrafthie tise of rotary wings to produce the thrust
force necessary for motion. The main benefit of using a roadircs its ability to move in all direc-
tions of the Cartesian space while preserving an indepéteading. Therefore, rotorcraft have
an advantage relative to fixed wing aircraft because theyotloeguire any relative velocity to

produce aerodynamic forces [40] and also due to their \&@iflight capability.
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Main rotor Tail rotor

— /

Figure 1.1: Typical helicopter configuration. The heli@potion is produced by two engine
driven rotors: The main and tail rotor.

The main representative of the rotorcraft family is thedwter. The typical configuration of a
helicopter involves two engine driven rotors: The main dralthil rotor. The main rotor produces
the thrust force for the vertical lift of the helicopter. Tta@l rotor compensates the torque pro-
duced by the main rotor and controls the heading of the hacoThe change of the helicopter's
fuselage attitude angles results in the tilt of the mainmratal, therefore, the production of the
propulsive forces for the longitudinal/lateral motion bé&thelicopter.

Small scale helicopters retain all the flight charactersséind physical principles of their full
scale counterpart. In addition, they are naturally moréeamid dexterous compared to full scale
helicopters. Their flight capabilities, reduced size anst bave monopolized the attention of
the UAV research community for the development of low cost efficient autonomous flight
platforms.

The design of an autonomous small scale helicopter fligttgota requires several exper-
tise in diverse fields of engineering. Some of the challengeards the development of an au-
tonomously flying helicopter involve sensor integratiom @ensor fusion to obtain accurate mea-
surements, flight controller design, path planning and camioations. Advances in sensor tech-
nology, computational efficiency and the constantly redusize of processors provide a signifi-
cant boost in the development of on-board hardware for thédJA

The goal of this dissertation is to examine the challengiesigh problem of autonomous
flight controllers for small scale unmanned helicoptersypidal flight controller system is com-

posed of a mathematical algorithm that produces the apjpteprommand signals required to
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perform any autonomous flight. The control algorithm reesithe measurement signals from
several sensors and triggers a suitable output for opgretanhelicopter. The controller’s output
is also referred to as the controller’s feedback signal. rApartant requirement of the controller
design is to guarantee the stability of the helicopter dutie autonomous flight operation.

The most reliable approach for designing the control athoriand also examining the sta-
bility properties of the autonomous flight system, is via erwdcontrol theory. According to this
theoretical framework, the flight controller design is lthea the helicopter dynamic model. This
model is a mathematical system of ordinary differentialagguns. The dynamic model describes
the helicopter response to any given input.

Helicopters are highly nonlinear systems with significayrtamic coupling. The dynamic
coupling is attributed to two main sources. The first onedsttblicopter nonlinear equations of
motion. The second one is the dynamic coupling between thergeed aerodynamic forces and
moments. In addition, there is also significant parametdmaodel uncertainty due to complicated
aerodynamic nature of the thrust generation. Furthernil&;opters are considered to be much
more unstable than fixed wing aircraft and constant contrtdba must be sustained at all times.
The above helicopter characteristics constitute verylehging obstacles to the controller design
problem.

As in most control applications, the helicopter model tisaised for control design purposes
is just an approximation of the actual nonlinear helicoptgramics. To this extent, in order to
develop a generic flight control system which applies to mstatdard small scale helicopter plat-

forms, the designer must successfully solve the followirigrmediate tasks:

e Derive the structure and the order of a parametric dynamigainhat best describes the
helicopter motion. The order of the model should be kept toimiim such that the para-
metric model includes only the absolutely necessary viasathat are required for the rep-
resentation of the helicopter dynamics. Dynamic systenisghf order are very impractical
since they significantly increase the complexity of the mardesign. The parametric model
should provide a physically meaningful dynamic descripfior a large family of small

scale helicopters.
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e Based on the parametric helicopter model, determine a rarf@adback control law such
that the helicopter tracks a predefined reference trajecidre design should guarantee that

the control inputs remain bounded while the helicopterksabe reference trajectory.

e Finally, for a particular helicopter, determine which ig thest methodology for accurately

extracting the values of the parametric model.

Most of the current work published in the field of helicoptentrol restrict its analysis only
in a subset of the above design challenges. This dissertiatmne of the few research efforts
that encompass a thorough examination of all of the abovgriésues. The characteristics of
the helicopter dynamics (high uncertainty, nonlinear ¢ediglynamics) constitute the helicopter
control problem stimulating for both its theoretical andlfife implementation viewpoint. The
objective of this work is to provide mathematically consigtmethodologies that can be applied

into actual small scale helicopter platforms.

1.2 Problem Statement

The helicopter dynamics are inherently nonlinear with igant dynamic coupling among
the state variables and control inputs. The dynamic cogm@ipresses the fact that any change in
a control input affects multiple state variables of thedwgdier. Therefore, each input effects not
only the state variables of interest, but also producestemited secondary responses. To suppress
the unwanted excitation of secondary state variables altsimaous coordination of all the control
inputs is required at all time instances. The nonlinearnezdind the cross coupling effect of the
helicopter dynamics places them among the most compleal aehicles.

The helicopter has four control inputs. Two cyclic commatidg manipulate the longitu-
dinal/lateral motion, one collective command that costtbe vertical motion and finally the
pedal command that controls the heading motion of the hatlto Since the control inputs are
significantly less than the motion variables, the helicodurther classified as an underactuated

system.
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The actual helicopter dynamics are represented in matlheahtgrms by the differential equa-

tions of the following nonlinear system:

T = f(x,ue) 1.1)

wherexz € R” is the helicopter’s state ang. € R* is the control input vector. Control techniques
based on modern control theory are model based, in the dwmtsthé controller architecture de-
pends on the dynamic description of the system. Therefoi@yledge of the helicopter’s dynamic
model is required for the design of autonomous flight coldrs!

However, the actual helicopter dynamics are unknown and ambt engineering applications,
they are approximated by physically meaningful matherahtiwodels of lower order. To this
point, it must be stated that the approximated model is jusabstraction” since it is practically
impossible to provide a complete representation of theahbielicopter dynamics [81]. However,
this does not mean that it is impossible to develop a modad diifficiently represents the dynam-
ics of the helicopter under certain operating flight comahis.

Generally, there are two ways to approximate the actuatdyier dynamics. The firstis by a
Linear Time Invariant (LTI) model. The second represeatats via a model of nonlinear differ-
ential equations. Typically, the validity of the LTI modslriestricted in the vicinity of a particular
operating condition of the helicopter. For the descriptiba wide portion of the flight envelope,
multiple linear models are required for different opergtaonditions. The LTI model is repre-

sented by a set of first-order linear differential equationstten in the form:

i = Ax; + Bu,
y=Cizy (1.2)
Ym = Clmxl

wherex; is the vector of the helicopter’s linear model state vagah),,, is the vector of the heli-

copters available measurements grig the vector of the helicopter outputs that need to be con-
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trolled. The dimension of the output vector can not exceechtimber of the control inputs. The
design problem is to find a feedback law of the measuremetveée.,u; = ®;(y,,), such that
whenu. = uy, then the helicopter output asymptotically tracks a refeectrajectory denoted by

yr. Hence, the objective is:

Jim [ly(t) — e(6)]| = 0 (L.3)

By applying modern control design techniques, the architecof the feedback law; will be (in
general) depended on the structure of the linear system giy€1.2).

Nonlinear models are used to provide a global descriptichehelicopter dynamics for the
complete flight envelope. They are more elaborate and congpi@pared to linear models, how-
ever, only a single model is required for the descriptiorheftielicopter dynamics. When a non-

linear dynamic representation is chosen, the helicopteaihycs can be written as:

Ty = ¢($m Uc, :u)

y = Chyp (1.4)

Ym = C:Lnxn

wherey, denotes the parameter vector of the nonlinear model. Otegewren in the case of the
nonlinear representation, the output and the measuremeetanof the helicopter are identical
with the linear model case. However, the dimensions of thie stectorse,, andx; are (in general)
different since the two models might have different ord&ignilarly to the linear case, the control
objective is the design of a feedback lay = ®,,(y,,) such that whem, = u,, then the
asymptotic tracking of (1.3) is achieved. Sincgdepends on the state space equations of (1.4)
then, in principalu; andwu,, will be different. The block diagram of the helicopter traak control

problem is illustrated in Figure 1.2. In either case thegteshallenges are:

e The determination of the order and structure of the paraoeitodel (1.2) or (1.4). These
parametric models should encapsulate the dynamic behaiviolarge family of small scale

helicopters.

www.manaraa.com
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Figure 1.2: This block diagram illustrates the helicoptemntcol design problem. The helicopter
dynamics can be represented by a linear or nonlinear sydtdifiesential equations. In either
case the feedback control law depends on the model choice.
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e The derivation of a consistent methodology for designirggfédedback laws; = ®;(y,,) or

u, = ®,,(ym) Which guarantee that the tracking objective given in (1s3)dhieved.

e The calculation of the matrice$, B or the parameter vectar such that the predicted re-
sponse from (1.2) and (1.4) is the same with the actual hkcaesponse obtained by flight
data. The identified parameters are required for the impiésien of the control laws;

andu,, respectively.

1.3 Methods of Solution and Contributions

This research provides a complete and consistent soluditrethelicopter controller design
problem. All intermediate challenges associated with tdebpter controller design are addressed
for both the linear and the nonlinear representations oh#tieopter dynamics. The proposed
solutions incorporate a fine balance between theoreticdfaachallenges and real-life application
issues. The proposed controllers performance and apijiigave evaluated using the commer-
cially available flight simulatoX-Plane The experimental part of this research was conducted
in the X-Planeenvironment for a small scaRaptor 90 SERadio Controlled (RC) helicopter.
Depending on the helicopter model representation, the@tet designs proposed in this work

are classified as linear and nonlinear.

1.3.1 Helicopter Linear Control

The proposed control design is based on a linear MultiptediMultiple-Output (MIMO)
coupled helicopter model. Typical design techniques tkat @ith the tracking problem of linear
systems are the internal model approach and the integrabtaesign. The disadvantage of the
internal model approach is its complex design while thegiretecontrol is restricted only in cases
where the reference output is a constant signal. The prdmiessgn guarantees the asymptotic
tracking of arbitrary continuous reference trajectoriéthwhe only requirement that the reference

signal and its higher derivatives are bounded.
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The main novelty of the proposed controller is its ability'pass” the intuitive notion of he-
licopter piloting to the mathematical controller desighisTis achieved by decoupling the rotor
dynamics into two separate subsystems. The first subsystaives the coupled dynamics of the
longitudinal/lateral motion while the second subsysterpisiposed by the yaw/heave dynamics
of the helicopter. This separation provides a more distiffeict of the helicopter inputs to the
state variables of the two subsystems. The intuitive oeralf the vehicle dictates that the two
cyclic commands are used for the generation of longitucanal lateral motion. The two collective
commands of the main and tail rotor are mainly used for thelywwtion of the vertical lift and
regulating the helicopter’s heading.

The basic idea of the controller design is to determine aelgsitate vector for each subsystem
such that when the helicopter state variables convergesiodbsired state values then the tracking
error tends asymptotically to zero. The desired state veéw each subsystem, are composed by
the components of the reference outputs vectors and tliggiehderivatives.

The second contribution of the proposed design is the dpredat of a recursive procedure
for the derivation of the aforementioned desired stateorsdor each subsystem. The recursive
procedure is based on the backstepping design of systemsdrigedback form. However, the
linear helicopter dynamics are not is feedback form. This ifattributed to the coupling between
the helicopter’s external forces and moments. Similarldi#, a simplified helicopter model that
neglects the coupling between the helicopter forces andentsiis in pure feedback form. This
approximation is based on the rational assumption thatdtee$ produced by the flapping motion
of the main rotor blades are negligible compared to the fopreduced by the tilt of the fuselage.
Since the approximate system is in pure feedback form, Issfeedback linearizable and differ-
entially flat. The derivation of the desired state vectofsased on the differential flathess property
of the two subsystems.

For the linear model representation of the helicopter dyiosuthe model structure proposed
in [70] is adopted. This linear model has been successfskyl dor the parametric identification
of several small scale helicopters of different specifaai[8, 10, 27, 28, 89, 90]. The proposed

model is a liner coupled system of the helicopter motionaldés and the main rotor flapping
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dynamics. The model validity is evaluated by performingjfrency domain system identification
using flight test data obtained for tRaptor 90 SEThe frequency domain identification proce-
dure of theRaptor 90 SHakes place by using tHelFER® package developed by the NASA
Rotorcraft Division (Ames Research Center) [105]. The tiienl model is later used to evaluate
the controller’'s performance.

Finally, a second controller is introduced which does nquies the knowledge of the heli-
copter model. In many practical control applications thé\\@ dynamic model of the helicopter
is not available. A fundamental controller composed by BI80 Proportional Integral Derivative
(PID) feedback loops is presented. This control schemerisa@mmon start up design point in
real-life applications, since it does not require knowkedf the helicopter model and the con-

troller gains can be empirically tuned.

1.3.2 Helicopter Nonlinear Control

The adopted nonlinear model of the helicopter dynamicssséan [47]. The helicopter
model is represented by the rigid body nonlinear equatiémsodion enhanced by a simplified
model of force and torque generation. The first controllesigieis based on the backstepping
design principle for systems in feedback form. The interiatedbackstepping control signals
(a.k.a. pseudo controls) for each level of the feedbaclesysire appropriately chosen to stabilize
the overall helicopter dynamics. The resulting systemratymamics can be separated in two in-
terconnected subsystems representing the error in ttemglhand attitude dynamics, respectively.
This separation reflects the inherited time scaling thatexn the helicopter dynamics. The atti-
tude dynamics are significantly faster compared to the dyecgaf the translational motion.

One of the novelties of the proposed controller is that thesthmagnitude is used to compen-
sate the translational error dynamics in all Cartesiarctdors and not only for the heave dynam-
ics. Furthermore, apart from stabilizing the attitude dyits, the control design can guarantee

that the helicopter will not overturn for every allowed nefiece trajectory. In addition, the use of
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nested saturations in the intermediate pseudo controledfanslational dynamics can guarantee
that the physical constraints of the helicopter motion amagy will be preserved.

Theoretically, the proposed controller is applicable fottbfull scale and small scale heli-
copters. However, the adopted nonlinear model is signifigaimplified and does not include
higher order dynamics such as engine, inflow velocity andr@tor lead-lag dynamics that are
required for the modeling of full scale helicopters.

Although this controller has significant theoretical pdi@inthe extraction of the model pa-
rameters from the continuous time nonlinear model using timmain identification is compu-
tationally inefficient. The identification procedure ismgigcantly simplified when the nonlinear
dynamic model is discretized. A second controller is intrced that applies the backstepping
methodology for the discrete time system. Similarly to tbhatmuous time case, the discretized
model has a cascade structure. The main contribution ofételabed controller is the design
freedom in the convergence rate for each state variableeafabcade structure. This is of partic-
ular interest since control of the convergence rate in el bf the cascade structure provides
better flight results. Furthermore, the stability of theuilisg dynamics can be simply inspected
by the eigenvalues of a linear system without the necessityapunov’s functions. Those eigen-
values are determined by the designer.

For the identification of the parameters of the nonlineacréie time system, a simple recur-
sive least squares algorithm is performed. The identifiedehand the controller performance
were evaluated for thRaptor 90 SEFinally, the identification results of the previous metbied
ogy can be significantly improved if the discrete nonlineglidopter dynamics are represented by
a Takagi-Sugeno fuzzy system. After the development of #i@di-Sugeno system, a standard
RLS algorithm is used to estimate its parameters. The regulizzy system is an interpolator of

nonlinear discrete systems, which depends on the helicefflight condition.
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1.4 Dissertation Outline

This dissertation is organized as follows. Chapter 2 pitissbe literature review related to the
helicopter control problem. The review includes a desiaipbf several flight control systems that
have been implemented to a variety of helicopter types.

The next two Chapters provide the necessary informatioth®understanding of both linear
and nonlinear helicopter models. In particular, Chaptere3gnts an analytical derivation of the
helicopter’s kinematic equation of motion, when the hedteo is treated as a rigid body.

The goal of Chapter 4 is to present a simplified model of thenmatior dynamics that encap-
sulates the coupling effects between the fuselage motidithenmain rotor. Chapter 4 presents
the sequence of all the intermediate events that take plagethe implementation of the cyclic
commands to the generation of the blades flapping motion.cbheepts described in this Chapter
are important for the understanding of the external aeraayo forces and moments models, used
by both the linear and nonlinear representations of thedygter dynamics.

The Chapters 5 and 6 are related to the linear controllegdder helicopters. Chapter 5 gives
a description of the frequency domain identification metimbich is used for the extraction of low
order linear helicopter models.

Chapter 6 introduces a tracking controller design baseti@tiriear helicopter dynamics.

Chapter 7 provides a backstepping tracking controller dbasethe nonlinear helicopter dy-
namics.

Chapter 8 introduces a discrete time applied backstepmingaller and a simple time domain
identification method for the determination of helicopgariodel unknown parameters.

Chapter 9 shows how a Takagi-Sugeno fuzzy system can imgmewene domain identifica-
tion results.

Chapter 10 provides an extensive comparison and evaluatithe controller designs that have
been presented in the previous Chapters.

Concluding remarks and future work follow in Chapter 11.aHiy) Appendix A provides

background information about the backstepping controhoabt
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Chapter 2: Literature Review

This Chapter presents the literature review of severaltfightroller designs for rotorcraft.
Flight control systems have been tested in a wide range ofamtft types and configurations.
The review includes applications for several rotorcragfiety such as full-scale, small-scale and
experimental platforms, which are gimbaled on a verticahdt The flight control systems that
exist in the literature use tools from all the fields of cohth@ory by incorporating into the design
classical, modern and intelligent control techniques.

Flight control systems are mainly classified as linear andinear. Typically, this classifica-
tion is based on the rotorcraft model representation thadésl by the controller. Linear control
designs are more application-oriented and have been ingolst on the majority of rotorcraft
autonomous platforms. Their popularity stems from the $uitp of the control design, which
minimizes both the computational effort and the design ti@e the contrary, nonlinear con-
trollers are mostly valued for their theoretical contribatto the rotorcraft control problem and
their implementation to actual platforms is limited. In wi@lows both linear and nonlinear

control designs are covered and compared.

2.1 Linear Control

Classical control techniques disregard the multivariaialeire of the rotorcraft dynamics and
the strong coupling that exists between the rotorcrafestand the control inputs. In the controller
designs of this type, each control input is responsibleHferregulation of a particular rotorcraft
output. The interaxis couplings that exist between thercodt outputs are disregarded, and each

control input is associated with a Single-Input Singles@ut(SISO) feedback loop. The SISO
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feedback loops that correspond to the control inputs argtzely independent with each other.
The SISO feedback loops are designed based on typical l@mirghtechniques. The stability
of the feedback loop is determined by the phase and gain nsaofithe latter. These margins
dictate the admissible amount of gain and phase that carjdmtad by the controller such that
the feedback loop dynamics are stable. These margins, leovean easily lead to erroneous
conclusions in the case of multivariable systems [108].

In [89] a PID controller composed by four independent SIS@ptois applied to th&yosho
Concept 60 Graphitemall scale radio controlled helicopter as part of Begkeley AeRobdBEAR)
project. In order to evaluate the closed loop charactesisif the PID scheme an eleven state
linear model was identified based on the model structuregsegb by [72]. The model param-
eters were identified by using the prediction error methadl iha time domain identification
approach. The PID design did not manage to suppress theing@fiect between the lateral and
longitudinal motion of the helicopter and the flight conlieolwas limited only to hover flight. The
results indicate that SISO techniques have moderate peafare and multivariable approaches
are required to eliminate the inherent cross coupling etiethe helicopter dynamics. A similar
multi-loop PID design has been implemented in [44] fofeanaha R-5@mall scale helicopter.
Similar shortcomings of this classical control approadtrieted the autonomous flight of the
helicopter only to hover mode.

A simple classical control design composed of Proporti@etivative (PD) SISO feedback
loops is also investigated in [70] for tikamaha R-5Belicopter. The helicopter model is derived
by performing a frequency domain identification method. Weatified helicopter dynamics
are represented by a thirteen state linear model of the meéinables, the rotor and stabilizer
bar characteristics. The identified linear model is usedHeroptimization of the flight control
system. In this particular case, the use of a notch filterggested for compensating the effect
of the stabilizer bar on the helicopter’s attitude dynamidse particular case study indicates that
although the performance of flight control systems basedassical control techniques is limited,
accurate knowledge of the helicopter’s model can signifigamprove the design of the feedback

loops.
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The majority of linear flight controllers that have been aggbto autonomous helicopter plat-
forms, are based on 1., feedback control approach. Tk&,, control scheme was initially
introduced in [68]. The main advantage of tHg, approach, is its ability to cope with both model
uncertainty and disturbance rejection. Thg, based controller design can be easily adjusted to
classical control techniques and at the same time compmefwahe multivariable effects of the
helicopter. The work reported in [80] provides very stronguanents of why thé{., approach is
a reasonable and suitable control solution for flight vedsicl

The typical structure of ai(,, controller is composed of two parts. The first part is the loop
shaping portion of the problem where the input channel iscorapensated and post-compensated
in a similar way that takes place in the classical contrahmégues of SISO systems. The pre-
compensator includes Proportional Integral (Pl) compensdor increasing the low-frequency
gain of the system, disturbance rejection and attenuatstdlaely state error. The post compen-
sator is typically used for noise elimination, therefotés itypically composed by low pass filters.
The second portion of the controller, is the, synthesis part, where a static feedback gain is
calculated in order to stabilize the multivariable systgmainics and at the same time being
optimal with respect to a performance index. More abfgut control can be found in [12, 17, 78,
92, 113].

In [108] an observer based multivariable controller wasgiesd, using a singular value loop
shaping method based on a two degree of freetitomoptimization. The controller objective
was the development of an Attitude-Command Attitude-Ha&lG@AH) flight system for the full
scale Westland Lynx helicopter. Contrary to autonomousiflégplications, the ACAH flight
system is integrated to manned flight operations. The gahleoRACAH flight controller is for
the helicopter to track an attitude and heave velocity comirihat is generated by the pilot’s stick
input. The principle of the controller design is to supprémsinteraxis coupling of the helicopter
dynamics, thus decreasing the pilot’s workload. The pdainly charged with the generation of
the reference attitude and heave velocity commands thatemessary for the helicopter's motion.
TheH, controller design was based on an eight rigid-body statd$amr actuator states linear

model. The model was obtained by linearizing a more elabarahlinear model in hover mode.
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The controller performance was evaluated through flighti&ations. Although the controller
was designed for hover and low speed operations, the siioulasults indicated satisfactory
performance for speeds up0 knots.

The design of an ACAH flight system based on a static loop shaping approach, is also
reported in [83] for the Bell 205 full scale helicopter. Thisrk addresses the common problem
that exists in multivariable modern control theory, acaagdo which the controller order is equal
to the order of the plant to be controlled. This fact is of jatar importance for the design of
helicopter flight control systems, since the order of a fadlls helicopter model may reach up to
thirty states! The order of the controller can be reduced bgehreduction techniques, however,
it is preferable to design from the beginning a flight conéobf minimum order via the use of
output feedback. When the complete state vector of a systawt iavailable for feedback pur-
poses, instead, only a subset of the state variables caretddoyshe controller; then the control
law is classified as an output feedback controller. Thisare$edemonstrated the design of high
performance and low ordé{ ., controllers by applying linear matrix inequality optimim
techniques. The helicopter model was derived by lineagiaithirty two states nonlinear model
at hover. The linearized model was further truncated tougetates by removing the dynamics
associated with the main rotor. The performance of the deeel ACAH system was tested in a
series of helicopter maneuvers with satisfactory results.

An alternateH ., static output feedback controller design is proposed ir236 for the stabi-
lization of an autonomous small scale helicopter at hovie dutput feedback approach allows
the design of multivariable feedback loops using a redueedfsstates which results in minimiza-
tion of the flight controller’s order. The structure of th@posed feedback loops reflect the phys-
ical flight intuition for helicopters such that the conteslidesign is well suited for the particular
application. The loop shaping part of th&,, controller attenuates the effects of helicopter high
frequency unmodeled dynamics. In most cases, the outpdibdek controller design problem
requires the solution of three nonlinear coupled matrixa¢iqus. In the reported work, a novel
iterative algorithm is introduced that solves tHe, synthesis part of the controller by solving

only two-coupled matrix equations and does not require tttkedge of an initial stabilizing
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gain. The controller structure is composed of two main lodpee first loop is responsible for the
stabilization of the attitude dynamics while the secongl@oused for position tracking. The con-
troller design is based on a thirteen state linear modelettdupled fuselage and rotor dynamics.
The model order and structure are obtained by [70]. Theiitkthjpparameter values have been
obtained for the small scalRaptor 90radio controlled helicopter. The controller performarge i
evaluated by numeric simulations and it is restricted taehdghts.

Promising flight results for an autonomous small scale bpter have been obtained in the
work reported in [51, 53-55]. In this research,7dr, loop shaping controller was implemented
on the Carnegie Mellon University'samaha R-50This approach applies a blending of multi-
variable control techniques and system identification tierdevelopment of the flight control
system. The helicopter nonlinear model is derived by ugiegMOdeling for Flight Simulation
and Control Analysis (MOSCA) modeling technique [52]. MOSE&mbines first principles and
system identification techniques for the derivation of Hothar and nonlinear helicopter models.
A thirty state nonlinear model is derived that includes thetage, main rotor, stabilizer bar and
inflow dynamics. The helicopter nonlinear dynamics areieriinearized in several linear models
which correspond to certain operating conditions of théchpter. Based on the multiple linear
models a gain scheduléd., loop-shaping controller is applied.

Gain schedulings a control technique according to which the gains of theérodler are vary-
ing depending on certain variables, which are cadleldeduling variables The scheduling vari-
ables could be functions of the system’s state variablesagyaenous variables that describe the
operating conditions of the system. The main design ideagsitrol a nonlinear system using
a family of linear controllers. The nonlinear system dynesrare linearized over a finite number
of operating points. The operating points are paramettigetthe scheduling variables. For each
linearized model that corresponds to a particular opeggioint, a linear controller is designed.
The overall control law operates as an interpolator of théipie linear controllers whose gain
parameters depend on the scheduling variables. More slatzolut gain scheduling can be found

in [43, 87]. The gain scheduling approach has emerged froom&g control applications, where
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the linearization of the vehicle’s nonlinear dynamics abseveral operating points is a common
procedure.

An interesting comparative study between several coetrdiésigns is given in [109, 110].
Both classical and multivariable linear controllers argduded in the study. An eighteen state
linear model, which represents the helicopter dynamiceatih was used for the flight controllers
design. The flight controllers were tested in a radio colgdohelicopter mounted on a mechan-
ical structure that allows the motion of the helicopter indalections of the Cartesian space. For
hovering the multivariable techniques had superior paréorce in comparison with the classical
control designs. From the multivariable designs L@R,and ., designs were evaluated. The
flight validation indicates that in the multivariable deasicase it is preferable to design multiple
feedback loops which correspond to independent subsysitthe helicopter dynamics, thus,
decomposing the problem. This approach is preferable fistabéshing the controller design
directly to the complete helicopter dynamics. The low omsldrsystems should appeal to the
physical flight intuition and should be as decoupled as ptessin the particular case the initial
linear model was decomposed to a subsystem representihgntfirudinal/lateral motion and a
second subsystem of the heave and yaw dynamics.

An example of a linear controller design for a helicopter wedical stand is also given in
[56]. The gimbaled like device on which the helicopter wasrerted to, allows only a three
degrees of freedom motion of the latter. A discrete Lineaadpatic Regulator is used with an
augmented Kalman filter for state estimation. The work inc@hpares a simple eigenstructure
assignment with full state feedback controller versus &gl QR design. The helicopter model
under consideration does not include the flapping dynanmidgtze verification takes place by

numerical simulations. Other robust designs of helicoptetrol are reported in [6, 50, 82, 97]

2.2 Nonlinear Control

In general, most control designs are based on linearizecbpétr dynamics using the widely

adopted concept of stability derivatives. However, in negeears there is considerable research
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related to helicopter flight control based on nonlinear dyicarepresentations. The nonlinear
controller designs are mostly valued for their theoretamaitribution to the helicopter flight con-
trol problem. Their applicability is still an open challengainly due to the increased order and
nonlinear structure of the controller. However, their ciimition to the understanding of the limi-
tations and capabilities of the helicopter control probisrsignificant.

Detailed models of helicopter nonlinear dynamics can bedaun [40, 79, 84]. However, such
models are of high order and impractical for controller degpurposes. In [47, 48] a simplified
nonlinear model of the helicopter dynamics is introducelde felicopter model is represented
by the nonlinear dynamic equations of motion of the helieophhanced by a simplified model
of the aerodynamic force and torque generation. The péaticoodel has been adopted in most
work related to the helicopter nonlinear controller designe reported work indicates that ex-
act input-output linearization fails to linearize the befpter model resulting in unstable zero
dynamics. This work has shown that the use of an approximatiehthat disregards the thrust
forces produced by the main rotor flapping motion, is fultestanearizable. This derivation is very
important since if the system dynamics are not input-outipetirizable most nonlinear control
techniques would be inapplicable. A feedback linearizationtroller is proposed based on the ap-
proximated model dynamics. It is proven that the proposetrotler, based on the approximated
model, achieves bounded tracking of the position and yagreete trajectories.

However, helicopters are characterized by significantrpatdc and model uncertainty due
to the complicated aerodynamic nature of the thrust geinerat herefore, linearization and non-
linear terms cancellation techniques are poorly suited.ifhportant that the controller design
exhibits sufficient robustness towards potentially sigaifit uncertainty. A design that guarantees
bounded tracking in the presence of parametric and modelrtaiaty is reported in cite [37]. The
proposed control law incorporates stabilization techeggior feedforward systems with input
saturation and adaptive nonlinear output regulation tiecias.

The work reported in [66, 67] addresses the design of an doitdpr the helicopter capable of
letting its vertical/lateral and longitudinal dynamicsdayaw attitude dynamics tracking arbitrary

references with only some bound requirements on the higider time derivatives imposed by
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functional controllability. This work is an extension of/Bby including the main rotor dynamics
and allowing the tracking of arbitrary trajectories. In didah, in the reported work the controller
design is based on the pitch-roll-yaw attitude conventiwtead of quaternions which are use
in [37]. Similarly to [37], the final control structure is a xof feedforward actions and nested
saturation control laws. The proposed controller is ablenfmrce very aggressive maneuvers
characterized by large attitude angles and to cope withigledarge uncertainties affecting the
physical parameters.

As previously mentioned, most nonlinear designs neglecetfect of thrust force components
associated with the tilt of the main rotor disk. This is commpoactice since those parasitic forces
have a minimal effect on translational dynamics. This sifigation results in a set of system
equations having a feedback form, which is ideal for baglstey control design established in
[49]. Backstepping control implementation for helicogtes presented in [11, 21, 64, 65] and
similar designs for a quadrotor in [32, 33, 42].

Approaches of nonlinear control that use Neural Networks)(Binhd nonlinear inversion are
reported in [14, 15, 34, 38, 39, 45]. In all the aforementoases, the nonlinear inversion re-
guirement and the augmentation of a NN increases significtre order of the controller. To
this extent the derivation of the controller using the noadir equation of motion of the helicopter
becomes impractical. Therefore these cases have appéemiitrollers based on the linearized
dynamics of the helicopter around hover. In [34, 45] the ysislis even more restricted by using a
simplified model of only the longitudinal and heave motiorttad helicopter. In [38, 39] the con-
troller was experimentally implemented toramaha R-50elicopter for a simple step command

response.
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Chapter 3: Helicopter Basic Equations of Motion

The objective of this Chapter is to provide the basic equatmf motion of the helicopter,
when the helicopter is treated as a rigid body. The equatibn®otion are derived by implement-
ing Newton’s second law that deals with vector summatioralldbrces and moments as applied
to the helicopter, relative to an inertial reference fratdewever, for practical reasons, analysis
may be significantly simplified if motion is described relatio a reference frame rigidly attached
to the helicopter. When this is the case, the equations abmate derived relative to this non-
inertial body-fixed frame. The end result of this Chaptehis tomplete state space representation

of the helicopter equations of motions in the configuratipace.

3.1 Helicopter Equations of Motion

The first assumption toward dynamic modeling of a helicojst¢o consider it as a rigid body
with six Degrees Of Freedom (DOF). The DOF dictate the mihimianber of parameters that are
required to specify an object’s configuration [95]. The raptof a rigid body is defined relative to
a Cartesian inertial frame. A frame is composed of a poinpace and three orthonormal vectors
that form a basis. Therefore, in order to derive the equatadrmotion, two frames are required.
The first one is the inertial frame (Earth-fixed frame) defiaed; = {O,, i drs E,}. A typical
convention of the Earth-fixed frame, is the North-East-Deystem wheré, points Northj;
points East and, points at the center of the Earth. The second frame is the-fixely reference
frame defined a§, = {Op, 5, js, ks } Where the centeD,, is located at the Center of Gravity
(CG) of the helicopter. The vectay, is pointing forward through the helicopter nogg,is point-

ing at the right side of the fuselage ahgl points downwards, such th@fB,j‘B, EB} constitutes a
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Figure 3.1: Body-fixed coordinate system. The componentiseoéxternal forces and moments
acting on the fuselage are denotedfdy = [X Y Z]T andr? = [L M N]7, respectively.
The linear and angular velocity components are denoted’by [ v w]? andw® = [p ¢ 7|7,
respectively.

right-handed Cartesian coordinate frame & iy x js). The directions of the body-fixed frame
orthonormal vectorsﬁfB,fB, EB} are shown in Figure 3.1.

There are two ways to represent free vectors in space. Thesftrgough the synthetic ap-
proach, where the free vectors are considered as geometitie® In the second approach, the
geometric entities are represented by coordinates. Thaled analytic approach [95]. In the
analytic approach, the vector representation dependsearotbrdinate frame of reference. The
advantage of the analytic approach is that the operatiomgeke vectors may be tackled by al-
gebraic methods (equations). For example, a vegtoan be represented analytically by the co-
ordinate triplew? = [w? wf wf]T € R3, with respect to the body-fixed frame, or by the triple
w' = [w] whwi]T € R3, with respect to the inertial frame. In general, the triplésandw’
will be different, however, they both represent the samergatnc entity«. In order to provide a
clear understanding of the derivation of the helicoptegsagions of motion, in this Chapter both
approaches will be adopted.

An inertial frame makes the analysis impractical since munand products of inertia vary

with time. This is not the case when a body-fixed frame is a®reid, where moments and prod-
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ucts of inertia are constant. Therefore, the equations afomavill be derived with respect to the
body-fixed frame.

The linear velocity vector of the fuselage CG is denoted’byhe coordinate vector of the
linear velocity isv”? = [u v w]”, with respect to the body-fixed frame. Similarly, the angula
velocity & of the fuselage, is represented in the body-fixed frameby= [p ¢ r]”.

The sum of all external forces acting on the fuselage aretddriy f” = [X Y Z]T, with re-
spect to the body-fixed frame. Similarly, the sum of all exé¢imoments (torques) are denoted by
8 = [L M N]*, as shown in Figure 3.1. Positive direction of the angulémaity and moment
components refers to the right-hand rule about the reggeatis.

The equations of Newton’s second law are valid only in antialereference frame. Therefore,

Newton’s second law for the translational motion of thedwmiter is given by:

> dv
=m — 3.1
F=mZ| (3.1)

wherem denotes the total mass of the helicopter. The opef’%ﬁq denotes the time derivative

1
of a vector in space as viewed by an observer in the inertiateace frame. From basic kinematic
principles, which can be found in [31, 111], the time deixabf v with respect to the inertial

reference frame, is equal to:
dv
dt

_dv
L dt

+d XU (3.2

B

The operato( x) is the vector cross product. The te@‘ denotes the time derivative of the
B

velocity vectory with respect to the body-fixed reference frame. In gené%éjr,

denotes the
B
derivative of a vector from the viewpoint of an observer ia body-fixed frame. At this point a
comment should be made about vector differentiation: Agatdd in [31], the operand%c(l‘t’—)
I

dc(z:) when performed on a free vector in space will provide in ganedifferent result. The
B

and

first one is the time rate of change of a vector as viewed by aargbr from the inertial frame,
while the second one is the time rate of change viewed by agredisof a rotating frame. The

change of the vector’s direction due to the angular velagityhe body-fixed frame, is not con-
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ceivable by the observer on the body-fixed frame. On the apntthis change is detected by the
observer of the inertial frame. A simple coordinate coneersvill not provide accurate results
since both of them are viewing a different change.

Sinced = uip + vjs + wky , then & = Uiy +0jp + wkp. Therefore, substituting (3.2) to

(3.1), the analytic expression of Newton’s second law ferttnslational motion is:

X/m =1+ qw—rv
Y/m =0+ ru—pw (3.3)

Z/m =+ pv—qu

To conclude the derivation of the equations of motion, Nevstsecond law is applied to all
moments that act on the CG. The reference point for calogjdtie angular momentum and the
external moments is rigidly attached to & of the helicopter. Furthermore, using the body-
fixed reference frame for the analysis is advantageous #ieceoments and the products of
inertia do not vary with time given that the mass distribatad the helicopter does not change.

Let A denote the vector of the helicopter angular momentumiafd=[h,, hy hT its
coordinates with respect to the body-fixed frame. From [8,angular momentum components

of the body-fixed reference frame are given®¥ = Zw?, whereZ denotes the inertia matrix:

Ia:a: _I:cy _I:cz
I=\-Z, +I, —ZI, (3.4)
_Izz _Izy +Izz

The respective moments of inertia are:

Tow =Y (U +zo)dm Ly => (2}, +z2)dm  L.=> (a2, +ya)dm
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The products of inertia are:
I:z:y = Iyz = Z TmYmdm Ly, =1L, = Z T Zmdm Iyz =Ly = Zymzmdm

The above sums apply to all elementary masgsef the helicopter, and,,,, y,, andz,, are the
distances of each elementary mass from the CG. It is assuratthe principal axes coincide with
the axes of the body-fixed frame, therefore, it follows that = 7, = 0,Z,. = Z., = O and
T, =1.0=0.

Newton’s second law for the rotational motion dictates thatexternal moments acting on
the helicopter are equal to the time rate of change of thelangwomentum with respect to the

inertial reference frame. Therefore:

dH
7= 3.5
= (3.5)
I
From differentiation of free vectors, one has:
dH dH B
%I—EB‘FWXH (36)

The term‘ﬁi—? is the time rate of change of the angular momentum with redpebe inertial
I

frame. The time derivative components of the angular momnarf% , are given by:
B
hz = :mcp
hy = Tyyd (3.7)
hz = zz"“

Substituting (3.6) and (3.7) to (3.5), the analytic expi@ssf Newton’s second law for the rota-

tional motion of the helicopter is:

L= Iacacp +qr (Izz - Iyy)
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M = TZyyq + pr(Zew — I.2) (3.8)

N = Izzf’ + pQ(Iyy - wa)

Therefore, the final form of the equations of motion with esgpgo the inertia frame, but ex-
pressed in the body-fixed frame coordinate components,iaa gy (3.3) for the translational and
by (3.8) for the rotational motion of the helicopter. A corapBorm of the helicopter equations of
motion expressed in the body-fixed frame, is the following:

mls 0| |0P w? x mv? fe
+ = (3.9)
0 7| |w® w? x Tw? o
From [75], the above equations are caliewton-Euler equationis the body-fixed frame’s coor-

dinates.

3.2 Position and Orientation of the Helicopter

The motion of the helicopter is defined by the position andrgétion of the body-fixed frame
relative to the inertial frame. The Newton-Euler equatiprsvide information about the transla-
tional and angular velocity of the helicopter. Howevertinei of them give information about the
helicopter’s current position and orientation. The hgdien equations of motion are completed by
determining the position and orientation dynamics of thietaDerivation follows [20] but with
additional details for clarification purposes.

Let 7y = {Og. i1, ]1,k1} define an intermediate frame that is aligned withand centered
on the CG of the helicopter. The helicopter orientation gttane instant may be obtained by
performing three consecutive rotations/f until it is aligned withF. The rotations are per-
formed at a specific order, they cannot be considered asrseamd they are not commutative

[111]. Therefore, the rotation order is important for cetency, as follows (see Figure 3.2):
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;” < 3
¢ J2 J3

4y

Figure 3.2: Helicopter orientation.

e Arotation of an angle) aboutk; . This rotation moves the helicopter to the direction de-

fined by F, = {Oy, 12, jo, k2 }, bringingi, parallel to the plane defined Gy and#;.

e A rotation of an anglé aboutj,. This rotation moves the helicopter to the direction de-

scribed byFs = {0y, 73, j3, ks }, aligningis with 7,,.
e A rotation of an angles about axisis bringing 7 to its final orientationf .

In the above convention, each rotation is performed aboak&nwhose location depends on the
preceding rotations [16]. The intermediate frames and eatelion is shown in detail in Fig-

ure 3.2. These angles with the particular sequence of cogtire also known & Y-X Euler
angles The Euler angles orientation vector is denotedsby- [¢ 0 1]7. Positive direction of each
angle refers to the right-hand rule about the respective @y arbitrary rotation of the body-

fixed frame relative to the inertia frame can be parametrigethe three Euler angles.
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3.2.1 Helicopter Position Dynamics

Expressing the helicopter position relative to the bodgdikrame is meaningless and such an
action cannot take place. Therefore, the position dynaameslerived with respect to the inertial
frame. Before we present the position dynamics, we intredbe description that relates the
coordinate vectors of the body-fixed and inertial framess @escription is called thetation
matrix and it provides a systematic way to express the relative@tion of the two frames.

Denote byv” = [v} v} v!]” the linear velocity’s coordinate vector with respect toithertial

frame. The linear velocity vector of the helicopter, relatio 75 andF;, respectively, is:

U= /U/ZB + ,U.;B + wEB (3.10&)

U= vézl + Ué;l + Uélzl (3.10b)

Using the definition of the Euler angles, the unit vectorsheftbody-fixed frameF; are written

relative to the framefs as:

ip 1 0 0 i3
fB =10 cos¢ sing ]3
kg 0 —sing cos¢ ]_i;3

=R (®)lis js k)" (3.11)

Similarly, the unit vectors of the framg; are expressed relative to the frathgas:

S

i3 cosf 0 —siné 9

- -

sl =] 0 1 0 J2
E3 sinf 0 cosf Eg

= ROz Jo kT (3.12)
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Finally, the unit vectors of the fram#, relative toF; are expressed as:

io cosy siny Of |41
;2 = |—sintY cosy 0 fl (3.13)
ko 0 0o 1| |k

=R 1 k" (3.14)

By consecutive substitutions of (3.11), (3.12) and (3.03Bt10a), one obtains:

-

U= [uvw|[is .;B EB]T
= [uvwlRY()is Js ks)”
= [uv w]RE($)RG (O)[i2 jo ko]"

= [uv w]RY(S)RY (O)RT (W)[iy J1 Ka)” (3.15)

Denote byR(©) the product:
R(©) = Ry(¥)Ro(0) Ry () (3.16)

Equating the right hand sides of (3.10b) and (3.15), one gets

vl u
vy | = R(©) | v (3.17)
vl w

where:

cosfcostyp singsinfcosyy — cos@siny  cos ¢ sin 6 cos ) 4 sin ¢ sin Y

R(©) = |cosfsiny singsin@siniy + cospcosyy cosdsinfsiney —singpeosyy| (3.18)

—sinfd sin ¢ cos 0 cos ¢ cos f
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The matrixR(©) is called the rotation matrix and it is parametrized withpexs to the three Euler
angles. The rotation matrik is used to map vectors from the body-fixed fraffigto the inertial
frameF;. The rotation matrix belongs to the Special Orthogonal groiuorder3 denoted by
SO(3).

Property 3.1. The rotation matrix has the following properties [95]:
1. RRT=R"TR=1
2. det(R) =1
3. Each column (and each row) &fis a unit vector
4. Each column (and each row) &fare mutually orthogonal

When the rotation matrix is parametrized by the Z-Y-X Euleglas, singularities occur at
6 = +m /2. More specifically, whed = +7/2, then, the inverse problem of retrieving the Euler
angles from the rotation matrix, does not have a solutiof. [8Gch singularities occur in any 3-D
representation o§O(3).

The rotation matrix facilitates the derivation of the pmsitand translational velocity dynamics
with respect to the inertial frame. Denote by = [p; p, p2]T the position of the helicopter CG.

Then, the position and velocity dynamics with respect tartleetial frame are:

p' =" (3.19)

o = LR (3.20)
m

Any rigid motion is defined by the ordered péjr', R) wherep’ € R3 andR € SO(3). The

groupSE(3) = R? x SO(3) is the configuration space of the helicopter and it is knowthas

Special Euclidean group
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3.2.2 Helicopter Orientation Dynamics

Consider that during an infinitesimal time intervilthe helicopter is subjected to three in-
finitesimal rotationsivy, df andd¢ resulting in a position defined by anglés+ dv, 6 + df and
o+de. Although finite rotations cannot be treated as vectorsqiteBimal rotations may be treated

as such, thus, according to [20], the vector that represkatabove rotation is:

A = diy + dbjs + diks (3.21)

Then, the angular velocity can be expressed as:

dn o . -
&= d—’z = din + 0o + Pk (3.22a)
and:
& =pis+qis+rks (3.22b)

By using the expressions (3.11)-(3.13) and equating th hignd sides of (3.22a) and (3.22b),

one has:

p| |9 0 0
q| = |0| +RE@) || +REORI ) [0 =
r 0 0 Y
p 1 0 —siné b
q| = |0 cos¢ singcosf| |6 (3.23)
r 0 —sing cos¢cosb w
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Based on the above equation, the orientation dynamics dfdleopter are given by:
0 = U(0)w? (3.24)

where:

1 sin¢gtanf cos¢tand
v(®O)= |0 cos ¢ —sing (3.25)

0 sin¢/cosf cos ¢/ cosb

For an arbitrary motion, the components of the rotation ixatie time varying. The derivative of
the rotation matrix is given by:

R = Ro" (3.26)

whered?” denotes the skew symmetric matrix of the vectér For a vectons = [w; wy ws]” the

skew symmetric matrix is defined as:

0 —ws w9
W = w3 0 —w1
— W2 w1 0

The multiplication of the matrixv with a vectorh, produces the coordinates of the cross product

w X h.

Proposition 3.1. For two vectorsy; and g, of R?, the skew symmetric matrix has the following

properties:
1. 5191=0

2. R(g192) = (Rg1) (Rg1)

3.01+47=0

4. Ry R” = Ry
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fr— ¥ = kRS .=

R
o R=R 76— w(ews
> —
g Tw® = —w® x (Zw®) + 7" (©)w

Figure 3.3: Interconnection of the helicopter dynamicshmspaceS E(3).

The derivation of (3.26) is not presented here because ittisfthe scope of this Chapter.
However, more details may be found in [75, 95]. The rotatiatrin dynamics are very impor-
tant, since they appear in the linear velocity dynamicsmging3.20). Although the orientation
dynamics are also given in (3.25), working with the rotatiatrix in control applications is more

preferable due to the special properties of the rotatiomirat

3.3 Complete Helicopter Dynamics

Having defined the position and orientation dynamics, theplete state space representation

of the helicopter equations of motion in the configuratiopaceS E(3) is:

p=0' (3.27)

ol = L Rpe (3.28)
m

R = Ro" (3.29)

Tw® = —w” x (Zw") + 77 (3.30)

where[p’ v! Rw?] € R? x R? x SO(3) x R3. Integration of the above equations provides
all the required information for determining the helicapteotion in the configuration space. The

interconnection of the helicopter dynamicsSii(3) is illustrated in Figure 3.3.

33

www.manharaa.com



As mentioned earlier, the orientation of the helicopterasmetrized by the Z-Y-X Euler
angles. In this case each intermediate rotation takes plamet an axis of a frame that is produced
by a preceding rotation. In aviation applications it is prable that each rotation takes place about
the axis of a fixed frame. Exactly the same equations areatéifithe final orientation is pro-
duced by ap angle about the axig, then an anglé about;, and finally an angle’ about the axis
k. In this convention the angles 6 and¢ are called pitch, roll and yaw angles, respectively.

The helicopter rigid body dynamics given in (3.27)-(3.369 eompleted by defining the exter-

nal body frame forcg” and torquer?®.

3.4 Remarks

This Chapter has presented an analytical derivation of ¢tiedpter’s basic equations of mo-
tion. The linear and angular velocity dynamics are obtaiinech Newton’s second law for transla-
tional and rotational motion. The orientation of the hefitar with respect to a stationary inertial
frame is determined by three orientation angles. The mitatiatrix is parametrized by the orien-
tation angles and constitutes a systematic tool for mapgaaetprs from the inertial frame to the
body fixed frame and vise versa. The position and orientatjoramics complete the description
of the helicopter’s motion in the configurations space. Thalfiequirement towards the derivation
of the helicopter's mathematical model is the determimatibthe external forces and moments
applied to the helicopter. The main source of force and ®ggneration of the helicopter is pro-
duced by the main and tail rotor. The main rotor itself is aaiyital system. A detailed model
of the aerodynamic forces and moments of the main rotor weldf high order and significant
complexity. The next Chapter presents a simplified moddhi@fhain rotor dynamics which is

suitable for control design purposes.
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Chapter 4: Simplified Rotor Dynamics

The helicopter's main source of propulsion is provided k@ rimin and tail rotor. The aerody-
namic forces and moments are nonlinear functions of mothamacteristics and controls. Due
to the complexity and the uncertainty associated with tmedy@mamic phenomena, a detailed
model of the forces and moments produced by the main rototdamiof high order and com-
pletely impractical for any controller design. In this Cterpthe modeling approach presented in
[47, 56, 70, 72] is followed, which provides a simplified dation of the main rotor dynamics and

the produced thrust force vector, adequate for controbsigih purposes.

4.1 Introduction

There are four control commands associated with helicqpketing. The control input vector
is defined asi. = [on Uiat Uped Ueo]”, Whereu,,, andu,.q are the collective controls of the
main and tail rotor, correspondingly. The collective comigigcontrol the magnitude of the main
and tail rotor thrust by a uniform change in the pitch angleslidhe rotor’s blades. The other
two control commandsy,,,, andu;,;, are the cyclic controls of the helicopter, which contra th
inclination of the Tip-Path-Plane (TPP) on the longitudlimad lateral direction. The TPP is the
plane on which the tips of the blades lie and it is used to piewa simplified representation of all
the rotor blades [70].

For the main rotor thrust generation, a simplified appro&ébllowed based on [47, 70, 72].
According to that, the thrust vector produced by the rotek @ perpendicular to the TPP. The

main rotor blades apart from rotating about the shaft alkey filso exhibit a flapping motion
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normal to the plane of rotation. Since the thrust vector isna to the TPP, by controlling the
TPP inclination, the pilot indirectly controls the diramrti of the propulsion forces.

The TPP is itself a dynamic system. The dynamics of the TPfsept the rotor dynamics.
The rotor is affected by both the pilot’s control commandd dre helicopter's motion. On the
other hand, the helicopter’'s motion itself is controlledthg applied rotor forces and moments.
Therefore, there is an obvious coupling between the rotdifaselage dynamics. The work pre-
sented in [70] and [104] provides a simplified model of th@ratynamics that is integrated with
the rigid body model, in order to arrive at a “hybrid model’tbé helicopter dynamics.

The goal of this Chapter is to present a simplified model ofrtiter dynamics, which encap-
sulates the cross coupling effect between the rotor andugedefge. The second task is to derive
a practical description of the thrust force and moment camepts, produced by the main rotor.
In general, the rotor mathematical modeling is a very comptecedure. The complexity of the
model, without considering any simplification assumptjom#l significantly increase. As pointed
in [18], the model complexity depends on the applicationrttealel is designed for. For control
applications, the proposed model provides a practical agdipally meaningful description of the
rotor dynamics. The main results of this Chapter associattitthe rotor dynamics are based on
[70].

In order for the reader to understand the final derivatiormefsimplified rotor dynamics and to
obtain a fair insight of the physical concepts that effeetribtor behavior, a series of intermediate
steps are presented. The first step is to introduce the adaitbOF of the blades. The control
of the rotor is mainly produced by the variation of the blagish angle. By changing the pitch
angle, the aerodynamic loads of the blades are also alt€héslis a way of controlling the lift
forces applied to each blade. To this extent, a generic ig¢iser of the basic mechanical design
that produces the variation of the pitch angle is given.

Simplified aerodynamics concepts are presented next, wastht in the derivation of the
aerodynamic forces applied to each blade. By giving a detsmni of the aerodynamic forces and
by considering the additional inertia forces acting on tlaele, the blade’s equations of motion

are derived. The adoption of some physically meaningfuptifination assumptions leads to
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the derivation of the so called Tip-Path-Plane dynamic gous, which essentially are the main
rotor dynamics. Finally, using the Tip-Path-Plane equesticthe force and moment components

produced by the main rotor are derived.

4.2 Blade Motion

The most common rotor configuration consists of two (or matetical blades attached to
the rotor hub [40]. The rotor hub is connected to the rotoftsfide blades perform rotational
motion around the rotor shaft with a constant angular veidei

Apart from the rotational motion around the shaft, the bdaalso have three additional DOF.

These DOF are illustrated in Figure 4.1. More specifically:

e Flapping This DOF produces a motion of the blade that is parallel éoptlane that includes
the blade and the shaft, and it is denoted by the flapping ahdlée flapping angle is

defined to be positive when the blade moves upwards.

e Lead-Lagging This DOF produces a motion of the blade that is parallel éohttib plane.
The lagging angle is denoted gy Lagging is positive when the blade opposes the direction

of rotation produced by the rotor.

e Feathering This DOF produces a pitching motion of the blade about thddkpan. The
feathering angle is denoted Qy Feathering angle is considered positive for nose up motion

of the blade.

The necessity for free motion of the blade with respect tedradditional DOF was appar-
ent from early helicopter designs. The feathering anglérotmthe aerodynamic forces that are
generated on the blades. Those aerodynamic forces cdmertirust force that is necessary for
the motion of the helicopter. However, the generation obdgnamic forces has as a result the
appearance of large moments on the root of the blade. Thosents are transmitted to the hub

and then to the rest of the helicopter’'s body. A rotor configion that allows the flapping motion
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(a) The 3 DOF of the rotor blade in space. The Figure is based
on [40].

lead-lagging &

hub center |

Lo \o =
K

flapping S feathering ¢

(b) Top view of the rotor hub where each DOF of the rotor
blade is represented by a blade hinge. The Figure is based on
[40].

Figure 4.1: Representation of the rotor 3 DOF.
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of the blade is needed in order to relief the blade root froos¢harising moments. The immediate
result of the flapping motion is the generation of Coriolismamts on the blade in the plane of
rotation [7]. A second configuration is needed to allow thgglag motion of the blade so those
moments are relieved.

There are several hub designs that allow the motion of theeklaT he traditional approach
is the use of mechanical hinges at the blade root for the figpgnd lagging motion. Modern
designs have substituted the use of hinges by flexible elsnethe root of the hub that allow
the flapping and lagging motion. In addition, there are caméijons that use both approaches. A
general classification of the rotor hub depending on the ar@chl configuration that is used to

facilitate the flapping and lagging motion according to [88] is the following :

e Articulated rotor. This type of rotor hub provides a flap and a lag hinge for eusdjvid-
ual blade. There is also a feathering bearing for the coofrtiie blade pitch. This is the
most classical means to provide blade motion. This configurallows the blade to move

independently from the others.

e Teetering rotor This type of rotor is composed of two blades that are comuktigether,
forming a continuous structure with a single flap hinge. We blades are connected to
the flap hinge in such a way that when the one blade flaps upwlaedsther blade flaps

downwards. This type of rotor does not include lag hinges.

e Hingeless rotor The hingeless rotor allows the flap and lag motion by stmattoending
in the root of the blade. This configuration does not requiingés. The structural bending
at the root of the blade is made by an attachment to the hubaritdever root restraint.
A feathering bearing or hinge is used for changes in the pgitalie of each blade. This
design provides a relative stiff rotor hub and as a resulhtieand blade loads are higher

than those of hinged configurations.
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4.3 Swashplate Mechanism

Helicopter flight control is achieved by varying the pitchgbnof the blades. Feathering is
the pitching motion of the blade about the span of the bla@les.feathering motion changes
the blade’s angle of attack, providing a way to control theshand the rotor moments that are
applied to the rotor. The feathering angle (as well as theiitpangle) are measured relatively to
a reference plane. This reference plane is perpendicutaetmtor shaft and it is denoted as the

hub plane The total pitch angle of each blade is given by the equation:

¢ = (o — C1ecos by — Crssinay (4.1)

The anglely is called collective pitch and it controls the magnitudehaf thrust vector. The two
angles(;. and(; s are called cyclic pitch angles. The two cyclic pitch anglestml the orienta-
tion of the thrust vector. More specificall§,. controls the lateral orientation of the thrust vector
while {75 controls the longitudinal orientation. The blade’s pasitis described by the azimuth
angleyy, = Qt. The azimuth angle is considered zero when the blade isaaligrith the tail facing
backwards.

There are several types of mechanical designs that protiecmtiective and cyclic angles
of the blades. A generic description of the most standariguanation is given in [40] and it is
described here. This configuration is composed of two maichaua@cal parts. The first part is
associated with the creation of the blade’s featheringeaagtl it is illustrated in Figure 4.2. The
pitch motion of the blades takes place about a pitch bearirghinge. This bearing is rigidly
attached to one of the tips of the pitch horn. The other tighefgitch horn is connected to the
pitch link. The pitch horn and the pitch link are connecteduch a way that the vertical motion of
the pitch link produces the blade’s pitch motion. What isdeskis a mechanical arrangement that
provides the periodic pitch angle described by (4.1). Thetratandard mechanical configuration

for this task is the use of the swashplate mechanism.
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blade hinges

blade

71— 7
Q T

< pitch link

pitch horn

Vi
rotor to the
shaft control
system

Figure 4.2: Connection of the pitch horn to the pitch link eTgitch link is also attached to the
swashplate. The blade’s 3 DOF are represented by three hilagkes. This Figure is based on
[40].

There is a wide variety of designs for the swashplate. Heegpn@sent the fundamental prin-
ciple of the swashplate’s function. This description isdzbsn [40]. A schematic of the basic
swasplate’s components is illustrated in Figure 4.3.

The swashplate is composed of two rings that are concentttictiae shaft. One of the rings
has the ability to rotate about the shaft while the other srenstantly nonrotating. Bearings lie
between the two rings. The blade pitch links are attacheldeaodtating wing while the pilot’s
controls are attached to the nonrotating ring. The two rargsattached to the shaft in such a way
that the swashplate surface can take an arbitrary orientediative to the shaft.

Moving the swashplate vertically to the shaft results in éiaum change of the blade’s pitch
independently of the position of the blade. Therefore, #rical motion of the swashplate pro-
duces the collective pitch anglg. On the other hand, a longitudinal or lateral tilt of the skas

plate creates a sinusoidal variation of the pitch angle nidipg on the azimuthal position of the
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to the pitch horn

L
< ) \ of the blade

rotating ring

bearing tiltable
swashplate
nonrotating ring
to the pilot’s
controls

Figure 4.3: Basic configuration of the swashplate mechanidns Figure is based on [40].

blade. It is obvious that the control of the swashplate titiduces the cyclic control angles; and
(1. of the rotor blades.
Therefore, the cyclic control angles can be written as lifigactions of the controls inputs of

the pilot’s stick. Hence:

Clc = Blatélat <ls = Alon5lon (42)

4.4 Fundamental Rotor Aerodynamics

The objective of this Section is to provide a relatively slifigd analysis of the rotor aero-
dynamics. The mathematical analysis will be kept to the mim required in order to reduce
complexity, however it will provide insight to the dominagi behavior of the rotor. In order to
determine the aerodynamic forces that are applied to tloeltkee first step is to analyze the ve-
locity components of the blade relative to the air, over th@plete blade span. This analysis, in
general, is a very difficult task. This is due to the complezissociated with the modeling of the

inflow velocity throughout the rotor disk.
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As indicated in [40] and [58] the blade element analysis oars each blade element as a two
dimensional airfoil. The aerodynamic behavior of neiglfipiblade elements is independent of
each other. An induced inflow velocity on each blade elemientilsl be accounted, which is a
product of the rotor wake. Analytical ways of calculating ihduced velocity may be found using
momentum theory, vortex theory or nonuniform inflow caltigias [40]. In general the calculation
of the inflow velocity is a very challenging task, due to its\inmiformity across the blade span,
so mathematical simplifications should be applied in ordeninimize the complexity of the
analysis. Finally, after determining the velocity compatseof the blade element, we calculate
the aerodynamic forces acting on this element. The comgigiamic behavior of the blade is
obtained by integrating the applied forces of the individelaments throughout the blade span.

In what follows, the hub plane is considered as the referptange. To facilitate the analysis
denote byF;, = {On, in, jn, kn} a reference frame attached to the main rotor whgre: —iy,
jn = jsandk, = —k,. The cente}, is located at the center of the rotor hub such thas
aligned with the blade whety, = 0.

Let V., denote the free stream velocity which is the helicoptensvéwd velocity with respect
to the air. The free stream velocity, illustrated in Figufe$(a) and 4.4(c), is directed straight to
the front part of the helicopter with an anglg;, with respect to the hub plane (positive when the
free stream velocity is facing downwards to the hub). Tteesfthe free stream velocity has a
component/,, cos ay,;,, Which lies in the plane of the hub, and a comporiégtsin «;,;,, which
is normal to the hub plane. Usually in the literature, thelanp component is defined as the non
dimensional quantity called rotor advance ratio denoteg that is the in plane free stream com-

ponent normalized by the blade’s tip speed. Therefore:

Vo €OS app

— 4.3
% OR, (4.3)

whereR;, denotes the blade’s radius. The rotor blades perform tlgpeEstof motion. The first one

is out of plane flapping motion described by the flapping apgl€here is also feathering motion
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about the blade axis with a feathering anglemeasured relative to the hub plane. Last, the blade
performs a rotational motion about the rotor’s shaft witlg@ar velocityf.

The velocity accounted by each blade element is due to theopé&tr forward motion, the
blade’s flapping motion, the rotor’s inflow velocity and tlegar’s rotation about the shatft.

Three velocity vectors are required for the descriptiorheftotal air velocityl/ as seen by
the blade element. Those vectors are two in plane compoagdtsne out of plane component
normal to the hub plane. The first in plane component is denogd/. It is tangential to the
blade and parallel to the disk plane. We consider that thitiypmslirection ofUp is opposing the
rotational blade motion.

The second in plane component is the radial component oflétake bdenoted b{/ i that lies
on the hub plane, it is parallel to the blade axis and posdivection is considered outwards. Both
of them can be seen in Figure 4.4(a). Finally the out of plammeponent is denoted ldyp and it
is perpendicular to the hub plane with positive directiocirig downwards as illustrated in Figures
4.4(a) and 4.4(b).

The tangential velocity/r is affected by the rotor rotation and the forward velocitireTcom-
ponent due to rotor rotation {3r (wherer is the radial distance of the blade element), while the
tangential to the blade forward velocity componentWs, cos ay) sin ¢, Therefore, the com-
plete form ofUr with respect to the azimuthal anglg and the radial distanceof the blade

element is given by:

Ur(r,vp) = (Voo cos app) sin by, + Qr (4.4)

The radial component of the blade element is solely prodbgetie freestream velocity, there-

fore:

Ur(vy) = (Vi cos app) cos 1y, (4.5)
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(a) Top view of the rotor. (b) Side view of the rotor.
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(c) Direction of the free stream and inflow velocity
relative to the hub plane.

Figure 4.4: Directions of the velocity components seen yliflade element. This Figure also
illustrates the direction of the free stream and inflow viédyoc
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In general the effect of the radial component towards theutation of the air velocity of the blade
element is neglected. However, this component should beidered when calculating explicitly
the effect of the rotor drug [58].

The out of plane velocity vector consists of four velocityrgmnents. The first one is the ve-
locity due to blade flapping given by3. The second one is the perpendicular to the blade element
component due to the radial velocitii given byUr, sin 5. The third is the effect of the forward
velocity described byV, sin ayy,) cos 3. Lastly, there is the influence of the inflow velocity,
which is perpendicular to the rotor hub with componentos 3. The complete out of plane veloc-

ity is given by:

Up(r,1p) = rB3+ Ugsin 8 + (Vo sin ap) cos B + (u;) cos 3 (4.6)

By considering a small flapping anglk the following simplified equation is obtained:

Up(r, ) = 18+ UrfB + (Voo sin app) + u; (4.7)

A schematic description of the velocities, aerodynamidesignd elemental forces acting on
a blade element is given in Figure 4.5. The magnitude of thecitg seen by the blade element is

given by:

U=\/U2+U2 (4.8)

The relative inflow angle (or induced angle of attack) is gibg:

¢y = tan ™ (g—;) (4.9)

The blade’s angle of attack is a function of the blade pitajleét and the produced inflow angle

¢p. The complete expression of the angle of attack is given by:
ap=(— dp (4.10)
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hub plane

Figure 4.5: lllustration of a two dimensional blade elemdrtte figure illustrates the velocity
components of the blade element, the aerodynamic anglethamdemental aerodynamic forces.
This figure is based on [70].

The aerodynamic lift and drug vectors of the blade elemenharmal and parallel, respectively,
to the resultant velocity/ seen by the blade element.

From [58] the incremental lifl L produced at the blade element is:

1
dL = §an20bClaabdr (4.11)

In the above equatiop, is the air densityg, is the blade chord and),, is the airfoil’s lift curve

slope. The drag component, denotdd, of the element blade is given by:

1
dD =

=3 paU?cyCydr (4.12)

whereC}; is a drag constant which depends on the blade’s geometrycdrhponents of the forces

acting parallel and perpendicular to the hub plane are diyen

dF, = dLsin ¢p + dD cos ¢y (4.13)
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dF, = dLcos ¢, — dD sin ¢y, (4.14)

The complete forces are obtained by integrating the abowatiemns for all the blade elements
along the blade’s length. The above equations indicatethieatyclic inputs and the helicopter
forward motion through the air, produce periodic aerodyicgforces with a frequency related to
Q. Actually, as indicated in [7, 40, 58, 70], the periodic abnoamic loads produced by feathering
have a frequency equal or closed?0An analytical description of the aerodynamic forces is

to complex and it it out of the scope of this work. These pecdidarces result to the periodic

flapping motion of the blade. The blade’s flapping motion isadibed in the next Section.

4.5 Flapping Equations of Motion

This Section presents the rotor equations of motion asatisith the flapping of the blades.
Flapping is assumed to take place about a hinge located aiténsection of the shaft with the hub
plane (no hinge offset). To complete the model of the flappinge, a linear torsional spring is
added at the hinge with stiffnegsg. This model approach is based on [7, 79] and it is a successful
way to represent uniformly a variety of hinged and hingetessrs. This modeling approach is
also able to capture the effect of the hinge offset. Aparnftbe flapping motion, the blade is
rotating with angular velocity? about the shaft. The effect of the rotational and trangtatio
accelerations of the fuselage on the blade motion is distlega This is a typical simplification
assumption, however, details about this effect can be faufiR]. Furthermore, mass uniformity
of the blade is assumed. The mass per unit length of the bdadlenioted byn;. The mass of a
blade element with radial distanedrom the blade root isn,dr.

The first thing towards this analysis is the determinatiothefforces acting on the blade el-
ement. The first force component is the periodic aerodynédifhforce dF,, acting on the blade
element. This force component is perpendicular to the bédelment facing upwards. In addi-
tion, there are two inertia forces acting on the blade. Ths¢ dine is the inertia force component

opposing the flapping motion. The acceleration of the blaement due to flapping isr, there-
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Figure 4.6: Aerodynamic, inertia and centrifugal forceirepcon a blade element. The flapping
angle of the blade is denoted py A centered torsional spring of stiffnes; is placed at the root
of the blade. This figure is based on [70].

fore, the inertia force due to flappintf; is m,dr3r, which is perpendicular to the blade facing
downwards. The second inertia force is the centrifugalddic. = m;drQ%r cos 3, which is
parallel to the hub plane directed radially outwards, duéocentripetal acceleratid®®s cos 3.
The inertia force due to Coriolis acceleration (this fore@ithe in-plane direction) and the weight
force acting on the blade are disregarded since they pragniicant smaller forces than the
forces produced by flapping.

The flapping equation of motion is derived by equating all reata that act on the blade. The
total moment is derived by calculating the elementary mdmaating on a blade element and then
by integrating along the complete blade length. Since theefoomponents that are collinear with

the the blade axis do not produce any moments, the momenti@ytekes the form:

Ry Ry . Ry
mpQr? cos [ sin Bdr + / my3ridr + KgpB = / rdF,dr (4.15)
0 0 0

By assuming small angle approximation férthe above equations takes the form:

. Ry Ry
(5 n Q%) / myrdr + K = / rdFydr (4.16)
0 0
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The integral of the first term is the inertia of the blade gibgn

Ry
Iy = myrdr (4.17)
0

Equation (4.16) takes a more intuitive form if the flappinglens is expressed as a function
of the azimuthal angleé, of the blade, instead of time. The operahddenotes the derivative of
( with respect ta),. The relation between the azimuthal angle and time is giyen,b= Qt so

regarding the derivatives @f with respect ta), the following equalities hold:

5 8ﬂ 87#1, - ’
B=or 0y Ot =Qp (4.18)
"_8_3%_ 2 311
B=gu o =8 (4.19)

Considering (4.18) and (4.19), then (4.16) results in:

1/ 2 _ 1 /Rb
B+ A8 = o7 |, rdFydr (4.20)
where the flapping frequency ratig [70, 79] is given by the expression:

)\2 _ Klg
5027,

+1 (4.21)

The dynamics of (4.20) resemble the equation of motion ofglsiDOF Spring-Mass-Damper
(SMD) system. The description of the latter is given by theagpnmi + ci + kx = F where
m denotes the mass of the objects the damping coefficient; is the spring stiffness an# is the
external applied force. For this system, the natural fraqués given byw,, = \/k/—m anditis
independent of the damping coefficient. For (4.20) it is obsithat the natural frequency of blade
flapping is equal to the flapping frequency ratig. The aerodynamic term in the right hand side

of (4.20) includes the damping term.

50

www.manharaa.com




4.6 Rotor Tip-Path-Plane Equation

From the analysis of the previous Section, it is apparerttttigaflapping motion depends
on the azimuthal angle of the blade. Therefore, the flappiatiom is a periodic function with
fundamental frequenc§ and periodl}, = 27/€. Every periodic function can be expressed as a

Fourier series, so the flapping motion can be expanded tologfng infinite sum:

[e.e]

B () = Bo — Y _ (bnc cos mapy + by sinniy)
n=1 (422)

= ﬁo — blc COS Q,[)b — bls sin ’Lbb — bgc COS 22,[)1, — bgs sin 2’¢b — ...

wheregy, 6,.., andg, s denote the Fourier series coefficients. Practical obdensahave shown
that only the first harmonics of the infinite series are sudfitito approximate the flapping behav-
ior of the blade since the contribution of higher harmonias be considered negligible. In this
case, following the classical approach of [13], the formhef lapping anglé is represented by

the first harmonic terms of (4.22) with time varying coeffitig therefore:

B () = Bo(t) — Bre(t) coshp, — Brs(t) sin vy, (4.23)

The above equation indicates that the tips of the blade aupreularly path. The plane that this
circular path lies on, is referred to ag-Path-Plane (TPPYr rotor disk In order for the reader to
understand the blade motion described by (4.23) the fotigwinalysis examines individually the
effect of the first-harmonic coefficients to the TPP. For diaity, the coefficientsdy, B, andfis
are considered constant with time. Denotddyy;, z,]” the coordinates of the tip of the blade
with respect to the hub framg;,.

If the flapping angle is composed only by thgcoefficient, then the blades form a cone as

they rotate and the TPP is a circle parallel to the hub plarniuatated in Figure 4.7(a).
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Figure 4.7: Effect of each harmonic given by (4.23) to the TPP

Regarding thes; . term, if small angle approximation is used and the flappirgjeais given by

B () = — e cos 1y, then the coordinate of the tip of the blade on kheaxis is:
zn = Rpsin B =~ Rpf8 = —RpB1.cos ¥y & —B1exh (4.24)

In this case the TPP lies on a plane that is tilted aboujthexis with an angle3;. downwards as
illustrated in Figure 4.7(b). Following the same analysisthe motion of3 (¢,) = — (315 sin ¢y,

one obtains:

2, = Rysin =~ Ry3 = —Rpfrssinthy, = —Brsyn (4.25)

and the TPP will be a plane tilted about theaxis downwards having an ange, with the refer-
ence plane. The lateral tilt of the TPP is illustrated in Fégd.7(c). The TPP equation described
by (4.23) results in a longitudinal and lateral tilt of thenegoroduced bys,. The tilt angles of the
cone ared;. andfys, respectively.

The dynamics of the first harmonic terms of (4.23) providedyxeamic equations of the TPP.
Those equations are derived by substituting (4.23) to j4&@ equating, respectively, the non-
periodic term, the terms includings v, and the terms witkin ¢,. A detailed analysis of this
approach, providing a thorough mathematical representatigiven in [13]. Leta = [3y a b]”
denote the state vector of the TPP (following the notatimermin [70]) wherez stands for3; . and

b for 515. The TPP dynamic equations are given by the following défiftial equation of the state
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vectora:

4+ Da+ Ka=F (4.26)

whereD is the damping matrixK is the stiffness matrix ané is the matrix of the forcing func-
tion. As mentioned earlier, the complete formulation ondheve equation can be found in [13].
Those equations are further simplified in order to provideagtical model of the TPP dynamics.

Those simplifications are introduced in [70] and they ars@néed in the next Section.

4.7 First Order Tip-Path-Plane Equations

For the derivation of a simplified model of the rotor dynanttes work in [70] has adopted
the detailed dynamic equations of the TPP presented in [§8]cnsidering some additional
simplification assumptions. The model proposed in [70] itable for system identification since
it includes the necessary components that capture the dgtavior that affect the helicopter
without burdening the model with unnecessary complexitye $implification assumptions are the

following:
e The effect of the inflow ratio is disregarded.
e The coning angle is considered constant, therefore it&ged dynamics are omitted.
e The effect of the hinge offset is disregarded.
e The pitch-flap coupling ratio is zero.
e The effect of the forward velocity is disregarded= 0).

The TPP model presented in [13] provides a very extensiverig¢ion of the TPP dynamics. If

we do not consider the above simplification assumptionsebelting TPP model is going to be

very complex and completely impractical for control degmmposes. Then based on [70], the
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simplified flapping dynamics are given by:

Tra = —a — Tfq + Apb + Ajontion (4.27a)

7tb = —b — 7p + Baa + Blattjat (4.27b)

The above equations are an approximation of the TPP dyngradsiced by the helicopter mo-

tion and control inputs. The termy denotes the main rotor time constant and it is given by:

16

The rotor’s time constant depends on the angular veléZiand the Lock numbey. The Lock

number is given by:

paach,‘f
=— 4.29
I (4.29)
Finally, the main rotor cross coupling termg and B, are:
Ay =—B, = §(Ag —1) (4.30)

~

4.8 Main Rotor Forces and Moments

The final part of the rotor description deals with the deforabf a simplified model of the
forces and moments produced by the main rotor. The thrusbvpooduced by the main rotor
is considered perpendicular to the Tip-Path-Plane (TRRgeShe thrust vector is normal to the
TPP, by controlling the TPP inclination, the pilot indirgotontrols the direction of the propulsion
forces.

Let Th; denote the thrust vector of the main rotor ahg its magnitude. The body-fixed frame

coordinate vector of the thrust is denotedl3§j. By simple geometry the following equations are
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derived:

Xum —sinacosb —a
Tyr= | Yy | = | cosasinb | Tv~| b| Ty (4.31)
Zm —cosacosb -1

The above equations are simplified by assuming small anglegimation ¢os(-) ~ 1 and
sin(-) ~ (-)) for the flapping angles. The small angle assumption is &doipy [40, 47, 70].

The generated thrust torque is the result of the above forderee rotor’s stiffness moments.
Denote byh%, = [z, ym 2] the position of the main rotor shaft. L& denote the vector of
the main rotor moments due to the hub stiffnéSs Then, the main rotor moment vector is given
by 7y = har x Tar + 7. The components of the hub stiffness moments vector in thg-bred

frame are given by:

Ls b
5= | Ms| = |a| Kp (4.32)
Nj 0

In the ideal case that the CG is aligned with the shaft/ig.= [0 0 — ;] then the pitch and roll

moments of the main rotor are given by:

Ly = —(=ln)Yym + Lg

My = =1, Xn + Mg

Hence:

Ly = (lhTM + Kg)b (4333.)

My = (I,Tos + Kp)a (4.33b)

Therefore, the pitch and roll moments about the CG depentie@main rotor thrust magnitude
and the stiffness of the hub. The above simplified case i®pted because it provides insight to

the development of the linear helicopter model. In the chaethe nonlinear helicopter dynamics
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are considered the more elaborate descripfign= h M X TM + 73, is used for the representation

of the moment produced by the main rotor.

49 Remarks

This Chapter has presented a description of the interneed@icepts that are related with
the flapping dynamics of the blades. The flapping motion tsally triggered by a change in
the cyclic pitch of the blades. The pitch variation alters bhade’s angle of attack resulting to
the generation of periodic aerodynamic forces that act tipeflade. The flapping motion is
produced by the aerodynamic, centrifugal, inertial and $tiffness moments that act on the blade.
The flapping dynamics equations are based on the work pezsenf70]. In the reported work the
simplified rotor dynamics (flapping dynamics) are derivedsigpificantly simplifying the more
elaborate model presented in [13]. The particular rotoreh@physically meaningful and has
been successfully applied to system identification modadinseveral helicopters. The flapping
dynamics given in (4.27) are suitable for small scale heliers since for full scale helicopters an
accurate model would also require the addition of the codimamics effect. The rotor model
is augmented to the rigid body dynamics to produce the cdamplelicopter model. The main
rotor thrust vector is considered perpendicular to the TRR modeling assumption is adopted
by both linear and nonlinear helicopter models. The taskefiext section is to present a reliable
system identification methodology for the extraction oéln helicopter models. The presented
methodology is based in the work reported in [70, 105] andsit@cessful approach for the system

identification modeling of small scale helicopters.
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Chapter 5: Frequency Domain System Identification

Helicopter flight controller design requires knowledge ahathematical model that accurately
describes the dynamic behavior of the helicopter. This eratitical model is represented by a set
of ordinary differential equations. Establishing such adelon the case of helicopters is a chal-
lenging task. This Chapter provides a thorough descrigifanfrequency domain identification
procedure for the extraction of linear models that corredpo certain operating conditions of the
helicopter. This methodology has been established in [&08]has been successfully applied for
a small scale helicopter in the work reported in [70]. Thefiency domain identification proce-
dure is evaluated for an experimental small scale RadiorGlted (RC)Raptor 90 SEhelicopter
through theX-Planeflight simulator. TheRaptor 90 SEhelicopter is used for the evaluation and
comparison of the several controller designs and identidicanethods that are presented in this

research.

5.1 Mathematical Modeling

Helicopter dynamics are nonlinear and of high order. Foicglmircraft models there is a
distinct separation between the dynamics associated mathateral and longitudinal motion.
This separation can not take place in the case of a helicaphare there exists a strong coupling
among the system dynamics.

The prime coupling effect is encountered by the interactibiine fuselage and main rotor
dynamics. As indicated from the previous Chapter, the ristardynamical system itself, affected
by both the environment, through the air flow (inflow) pasdimgugh the rotor blades, and the

fuselage motion. In many cases, the fuselage rigid bodyrdigsarepresentation is not adequate
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and the additional effect of the rotor should be encountgf@fl An additional source of com-
plexity is the description of the aerodynamic forces and miots acting on the helicopter. Those
forces and moments are complicated, with significant cheingtheir behavior, depending on the
operating condition of the helicopter.

Two approaches may be followed for the derivation of a matteral model representing
the helicopter dynamics. The first modeling approach is grevation of a mathematical model
from first principlesmodeling, while the second is througlistem identificatianin some parts
those two methods are complementary to each other and in ca@eg the use of both of them is

mandatory for increasing the accuracy of the derived model.

5.1.1 First Principles Modeling

When the first principles modeling method is used, the systgnations are derived by the
implementation of physics laws. Obviously, this approaeluires an a priori knowledge of all
the parameters that affect the helicopter motion and aeandics. The typical end result of first
principles modeling is a set of nonlinear differential etiu@s of high order that cover a wide
portion of the flight envelope. A common use of the first pyabes modeling method is for the
development of simulation models. The main disadvantadgki®fipproach is the large number
of parameters to be determined. Those parameters invobragjecal characteristics, mass and
inertias, drag coefficients and aerodynamic parametergydbthe latter parameters can be eas-
ily obtained by simple experimental tests (such as masgkmartias), however their majority
requires more sophisticated experiment methods such astuninel tests [105]. The difficulty
of obtaining an accurate estimate of many of the helicopteameters render the first principles

modeling method impractical for many applications.
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5.1.2 System ldentification Modeling

System identification is the procedure of deriving a matheaalamodel of the system based
on experimental data of the system’s control inputs and oredsoutputs. Two types of models
can be derived by this method. The first type istlo@parametric modeland examples of such
models are the impulse response and frequency responsegoiparametric models are di-
rectly produced by experimental data and provide an inpttd description of the system. These
model types are just collections of data and do not requiyekaowledge of the system structure.

The challenge of the system identification procedure, istive aparametric modebf the
system. Examples of parametric models are the transfetifunscand the state space models.
The first step towards the extraction of a parametric modehe derivation of a parametrized
model, which will serve as a logical guess of the actual systeodel. The use of an optimization
algorithm determines the parameters of the model that neilfin a least-square sense) the error
between the actual system responses and the model respdhedast question that arises is
what is a suitable guess of the initial parametrized mod&trims of model order, structure and
the initial values of the parameters. Estimates of thoseacheristics can be obtained by analysis
of the nonparametric model combined with information atedi by the first principles approach.

The system identification procedure is an iterative pracespending on the identification
results, the parametrized model can be refined in terms ef @md structure until a satisfactory
identification error is achieved. When the parametrized ehisdknown, the system identification
method reduces to the parameter estimation problem. TResteneany system identification
methods, which are well described in [61, 62, 93]. A majossification amongst the system
identification methodologies depends on whether the coatp@sponses are considered in the
time domain or the frequency domain. Frequency domain sygtentification has been proven a

successful approach for extracting accurate linear madelscraft and helicopters.
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5.2 Frequency Domain System ldentification

The inability of the first principles modeling approach toyide accurate and practical models
for control design, lead to the development of more suitap&tem identification approaches. In
particular, frequency domain identification has been mggias an ideal solution for extracting
linear helicopter models of high accuracy. One of the maimathges of this approach is the use
of actual flight data for the derivation and validation of thedel. Additionally, this has a coherent
flow of the design steps starting from the input-output cti@rization of the helicopter (nonpara-
metric modeling), continuing with the extraction of thetetapace model (parametric modeling)
and finally validating the predicted model in the time domdihis method is classified as an
output-error method where the fitting error is defined betwtbe actual flight data frequency
responses and the frequency responses predicted by thé mode

The initial step of the identification procedure is the eatiitn of the helicopter by specially
designed input signals such as frequency sweeps. Theiortarftthe test data inputs is to excite
the helicopter dynamics over a desired frequency rangechbiee of the desired frequency range
(model bandwidth) has an important role in the identifiaatiwocess. The model bandwidth has to
be wide enough in order to encapsulate all the dynamic sffefdnterest (i.e., fuselage dynamics
and rotor dynamics).

After some preprocessing to eliminate the noise effectsodimel types of inconsistencies in
the time domain output data, the second phase is the conguutdithe input-output frequency
responses using a Fast Fourier Transform. This phase ofdlbegs constitutes the nonparametric
model of the helicopter.

The next step is the design of the parametrized linear gpaieesmodel, using information
from the first principles physical laws and the nonpararoetrodeling phase. The linear model

has the form:

z(t) = A(ID)x(t) + B(I)u(t — 1) (5.1)
y(t) = Cx(t) + uc(t — 1) (5.2)
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wherezx is the state space vectgrjs the measurement vectadf,denotes the unknown model
parameter vector andis the system’s delay. The matric€s D are usually known, based on
standard kinematic equations. The objective of parametadeling is the extraction of the model
matricesA, B (depended oml) and the time delay.

The frequency domain identification method is only suitdblehe derivation of linear state
space models. Although the helicopter dynamics are nanlimeound certain trimmed flight
conditions, the nonlinearities from the equations of moanod aerodynamics are relatively mild.
When this is the case, a linearized model is adequate toatetypredict the helicopter’s re-
sponse. Usually, the validity of the linearized model isstattory in a relatively wide area of the
flight envelope around the trim point. However, a singledineodel in most cases is not enough
for a global representation of the flight envelope. Diffenaodels are required for each operating
condition.

After the determination of the linearized model, an optimtiian algorithm is used to tune
the identification parameters, such that a good fit is actibetween the parametrized system’s
responses and the flight data responses. The frequencyhsesp@agnitude and phase errors are
denoted by the vectar(w, IT) for a frequencyw. The objective is the minimization of a cost func-
tion J(II), which is the sum of the weighted squared erkdus II) over a finite number of fre-

guencies. More specifically:

zn:e (wi, INTWe(w;, IT) (5.3)
j=1
whereW is a weight matrix. The above procedures constitute thenpetrec modeling part of the
problem. If the parameter identification does not providatasfactory result, the parametrized
model is revisited in terms of order and structure until &sfattory minimization of the cost
function is achieved.
The final step of the identification procedure is the valolaif the model. This step takes
place in the time domain, with different flight data from tldemtification procedure. For the same

input sequence, the helicopter responses from the flightatatcompared with the predicted
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values of the model, obtained by integration of the stateespaodel. Again, if the validation
portion of the problem is not satisfactory the designer ghmodify the parametric modeling

setup and repeat the procedure.

5.3 Advantages of the Frequency Domain Identification

Based on [70, 105], some of the advantages for using fregudmmain identification for

helicopter modeling are the following:

e Biases and reference shifts from the trim condition are raddy the identification pro-

Cess.

e The frequency response estimates are unbiased from messtraoise, given that the

latter is uncorrelated with the excitation signals.
e Accurate identification of time delays.

e The frequency range of each frequency response is selext@itiually. Therefore, only the

most accurate data are involved in the calculations.
e The model structure and order selection are facilitatechbynbnparametric model.

e The frequency domain identification is computationally enefficient from its time domain
counterpart. The time domain identification requires thegration of the system state
space equations for each iterative step. Integration ofykem equation does not take
place in the frequency domain scheme. In addition, frequepmain identification requires

less data points than the time domain identification.

5.4 Helicopter Identification Challenges

The identification process encounters some particulacdiffes in the case of helicopters.

Based on [70, 105] those difficulties are listed below:
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e In many cases where the helicopter is operating at low \i#gscfhover, low speed cruising)
the control input has similar magnitude with the measurémeise. Common noise source
could be produced by structural vibrations caused from geses, the engine as well as the

rotor.

e The helicopter is a MIMO system with significant dynamic clingp (or interaxis coupling.
For any primary axis responser-axisresponse) caused by one of the inputs, unintended

secondary axis responsesf{axisresponses) result.

e A linear model based solely on the rigid body dynamics will be sufficient to accurately
describe the helicopter responses. A model of higher osdeeéded including additional
subsystems such as the rotor dynamics. Furthermore, thredyrtamics are not indepen-

dent from the rest of the model so a coupled fuselage-rotatetfrie required.

e The helicopter dynamics are in general unstable or crijicsihble. During the execution
of the excitation control signals, required for the expenital data collection, additional
feedback is required to sustain the vehicle in a range oftainesperating condition. The

presence of feedback deteriorates the identificationtesul

5.5 Frequency Response and Coherence Function
Consider a Linear Time Invariant (LTI) system with input andput signals:(¢) andy(t),
respectively. Denote by(t), the impulse response that characterizes the previousyksiés. The

time domain relation of the outpyi¢) with respect to the input(¢) of the system, is given by the

convolution integral [23, 77], namely:

y(t) = / Tt — Da(r)dr (5.4)
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The frequency domain representation of the signét$, y(¢) andh(t) is given by theFourier

transform More specifically:

X (jw) = /_ T (et
Y (jw) = /_ h y(t)e I<tdt (5.5)
H{jw) = /_ T h()e Tt

wherew is the real continuous time angular frequency variable diiargs. The system input-output

mapping is easier represented in the frequency domain by:

Y(jw) = H(jw)X (jw) (5.6)

The Fourier transforni{ (jw) of the impulse response is called frequency response of/tters.
Itis a complex valued function with real and imaginary paHs:(jw) and H;(jw), respectively.

The frequency response can be expressed in polar form as:

H(jw) = |H(jw)| e <) (5.7)

where:

|H (jw)| = \/H%(jw) +H2(jw) and ZH(jw)=tan"! ( g;((ﬁ))) (5.8)

The frequency domain can be also derived by the input andibsfjectral densities. The quan-
tities S, andS,, are the auto spectral density and cross spectral densipgctvely. The auto
spectral density and cross spectral density are functiomsr@mnly used in stochastic processes

[5, 46]. The two-sided auto spectral density, (jw) and cross spectral density,, (jw) are given
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by:
Sypz(jw) = 2/ Rm(T)e_j‘”dT Say(Jw) = 2/ Rzy(T)e_jWTdT (5.9)

whereR,.(7) andR,,(7) denotes the auto correlation and cross correlation, régply given

by:

Ruw(r) = lim ~ / T e®alt+ )t Ray(r) = lim — / T oyt £ ndt (5.10)

Spy(jw) = H(jw) S22 (jw) = H(jw)= (5.11)

An important quantity, particularly useful in the frequgrdomain identification of MIMO

systems is the coherence function. The latter is definech@®BtSO case as:

2 - 1SaGe)?
F}/zy(] ) - |Szz(]w)| |Syy(]w)|

(5.12)

The coherence function is a normalized metric with its valanging for zero to unity. Itis an
indicator of the linearity between the input and the outg@]| A value of the coherence function
close to unity, indicates that the output is significanthehrly correlated with the input of the

system. Possible causes for a low value of the coherencédorare [46]:
e Presence of noise
e The input-output mapping is nonlinear
e The input does not effect the output

In the case of MIMO systems the equivalent metric is denosgoiatial coherence. A low par-

tial coherence in a MIMO system, is usually an indicator @fttimne specific input-output pair
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is uncorrelated, therefore, the corresponding frequeesyanse should not be included in the
identification process. More about partial coherence caoued in [105].

All of the above functions will be calculated in a digital cpuater. The discretization of the
continuous signals(¢) andy(t) by a sampling period’ will lead to the concept of thBiscrete
Fourier Transform(DFT). DenoteN the total number of sampled data. The DFTs for dheam-
ples ofz(t) andy(t) are given by [73, 76]:

N-1

X (kQs) =) alto + ny)e 72/ (5.13)
n=0
N-1 )

Y (kQs) = > y(to + nTy)e 72mkn/N (5.14)
n=0

where(), is the frequency resolution arnglis the first sampling time instant. Finally the discrete

estimates of the auto spectral and cross spectral defisitand Sxy, respectively, are given by

[46, 70]:
Sua(h2) = oo X (RO)P (5.15)
Sy (h25) = 5o XT (k)Y (502,) (5.16)
(5.17)

where the upper scrigtdenotes the complex conjugate value of the variable.

5.6 TheCIFER® Package

The CIFER® package is an effective tool to tackle the aircraft and araft complete identi-
fication problem CIFER® (Comprehensive Identification from FrEquency Respongé][has
been developed as a joint venture of the Army/NASA Rototddafision (Ames Research Cen-
ter). The program is composed of six utility packages thiaract with a sophisticated database

of frequency responses. The importance of a well organirddlaxible database system is very
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crucial in a large scale MIMO identification procedure of arvahicle. TheCIFER® package is
designed to cover all the intermediate steps necessarlidatdvelopment of an air vehicle para-
metric model. The key characteristic 6fFER® is its ability to generate and analyze high quality
frequency responses for MIMO systems, by using sophisticBf~T and windowing algorithms.

The six utility packages oEIFER® are [70, 105]:

e FRESPID This utility package calculates the SISO frequency respsifor each input-
output pair. For the calculation of the FFTs a chirp-z aldyoni is used. The user provides
to the utility the time domain flight records of the input andmut measurements. Biases
and shifts are removed by the time domain data, and the flggiutrds are concatenated into
a single record. The time domain data are additionally &tlgto eliminate high frequency
noise) and additionally processed by overlapping windgwiFhe later actions are neces-
sary to improve the fidelity and the speed of the chirp-z fans. Finally the databased is

updated with the estimated frequency responses and caesfiamctions

e MISOSAThis utility package receives the frequency responsegqusly calculated from
FRESPID and removes the effect of secondary inputs whicp@ssibly correlated with the
primary input (conditioning). MISOSA outputs the conditem frequency responses and

partial coherence.

e COMPOSITEThis module optimizes the frequency responses for eaatirsp&indow ap-
plied by FRESPID and MISOSA, to provide the best possibleneged frequency response

and highest coherence function, over the desired bandwidth

e NAVFIT: This module belongs to the parametric portion of the idieatiion procedure.
NAVFIT calculates the transfer function model that bestthis estimated SISO frequency

response.

e DERIVID: This program estimates the MIMO state space representatimse frequency
response is the best fit for the estimated frequency respatained by the flight data.

The parameters of the model can be considered free or comestriay a different parameter,
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during the identification process. The unknown parameterexracted by the application

of a nonlinear iterative secant algorithm.

e VERIFY: This modules is the final step of the identification proceduVERIFY compares
the time domain response of the identified model versus theraxental data. The data
used by VERIFY should be dissimilar with the flight recordsaatied by the identification

procedure.

5.7 Time History Data and Excitation Inputs

An issue of primary concern is the design of the excitatigouia used to collect data for the
identification part. It is important to note that the behawibthe actual model that is required to
be encapsulated by the identifier should be included in tteewsed for the identification [105]. In
general regarding system identification, the design of Xoéaion signal is an open subject which
depends on the model to be identified. The excitation signest ine capable of exciting the actual
system modes that are needed to appear in the identified model

A description of excitation signals specially designeddcraft identification may be found
in [46]. Some of those signals are frequency sweeps, impalgeésines and doublets. In this work
frequency sweeps are used. Frequency sweeps are sinusgitb with variable frequency. The
frequency of the signal increases logarithmically ovektimRollowing this approach the excitation
signal is capable of covering the desired frequency barejuency sweeps are commonly used
in frequency identification techniques where the modelésiified over a predefined frequency
range.

Observations regarding the frequency sweeps are presergd] 105]. The most important
feature is that they are not required to have constant amdglitVariations in the frequency sweeps
instead of being avoided are welcome since they enrich dwgiémcy content of the signal. The
symmetry of those signals allows the helicopter to sustaipadsition around a certain operating

condition.
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When the frequency sweep is applied to one of the helicaptentrol inputs the rest should
be implemented in such a way to adjust the helicopter in tighberhood of the operating point.
As indicated in [105] the rest of the control inputs shouldubeorrelated with the main excitation
signal and at the same time suppress any unwanted flightioehBuring the system identifi-
cation procedure, frequency sweep data collected by devarzeuvers can be concatenated, so
it is very important that the data start and end at the trindd@mmn. A 3 sec period in trim at the
beginning and at the end is suggested.

The design of the frequency sweeps requires that the fregusmdwidth is determined a-
priori. In general a good bandwidth for helicopter idenéfion lies between 0.3-12 rad/sec [105].
The recorded length of the data for each sweep followingeatithumb should be four to five
times the period that corresponds to the minimum frequelbety{w, i, wma:] be the desired
frequency interval that the excitation signal should cont@ihen, the period that corresponds
to the smallest frequency will BE,,,, = 27/wnmin. The suggested recorded length should be
Tree > 4Tq.- The proposed excitation signal is giventy= Asin [f(¢)] whereA is the

amplitude of the signal and:

Trec
= d 5.18
s = [ oy (5.18)
K(t) - 02 [exp(clt/Trec) - 1] (519)
v(t) = Winin + K (t)(Wmaz — Wmin) (5.20)

From [105], the proposed parameters of (5.19)@re= 4.0 andC, = 0.0187. Further, based on
[105] a brief summary of the most important guidelines thetgd be accounted in the frequency

sweep signals, are the following:

e The sinusoidal should be as symmetric as possible to maititaihelicopter at trim. The

symmetric input will also assist the FFT to identify and remthe trim values.

e The sweep signal should provide satisfactory excitaticer tive frequency range of inter-

est. Special attention should be given to the low frequemcitation (0.3-1rad/sec). At

69

www.manaraa.com



least two periods of the minimum frequency of interest stidnd included in the excitation

signal.
e The amplitude does not have to be constant.

e The increase in frequencies is not important. Furthermtbeemaneuver should start and

end with a 3sec operation at trim.

e Most importantly, the secondary control commands shouldsbencorrelated as possible
with the primary excitation. The use of low frequency pulsescommended to keep the
off-axisresponses bounded. However, althoughati@xisresponses should not diverge
from the trim condition, they should not be suppressed eiffigose effects are produced by
the cross-coupled nature of the helicopter dynamics asdriformation should be included

in the identification process.

5.8 Linearization of the Equations of Motion

Equations describing the helicopter motion are nonlinéérdntial equations. Linearizing
these equations, under specific assumptions, is a commoticeréhat simplifies greatly calcu-
lations and at the same time provides an adequate desorgdttbe actual behavior of the heli-
copter. Derivations follow the work described in [20].

Model linearization is based on small disturbance theopcokding to that theory, analysis is
done under small perturbations of motion characteristiglsited to forces, momentums, velocities,
angular velocities, etc.) from a steady non-acceleratifigrence flight. The rationale behind
this approach is the fact that external aerodynamic forndsi@oments acting on the CG depend
mainly on helicopter’s control inputs and motion variatdesh as linear and angular velocities.
When this is the case, the perturbed aerodynamic forces antents may be considered as linear
functions of the disturbances [20].

The helicopter is assumed to perform a reference trimmelat flipen the disturbances occur.

In this equilibrium operation, the state variabi@f the helicopter can be approximated by=
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o + 0x, wherex is the trimmed value of the state afid the perturbation from the reference
flight condition. The small perturbations logic applies floe control inputs as well. Since in the
identification procedure we are going to consider only theehoepresentation of the helicopter,

the equilibrium state values will be:

Uy = Vg = wo =po =qo =10 =0y = ¢g =0

The perturbation quantities and their derivatives willéaery small values; therefore, their
products are negligible. Without loss of generality, itssamed that the trigonometric quantities

of the perturbed variables, for exampte, will be cos 66 = 1 andsin 60 = §6. Therefore:

sin(fy + d6) = sin 6y cos 660 + cos Oy sin 6 = 56 (5.21)

cos(6y + 06) = cos Oy cos 60 — sin by sin 00 = 1 (5.22)

Based on the above assumptions, substitutions into (3d3§3a8) result in the following perturbed

equations:

mou = —mgdl + Xo + AX
moév = mgdp + Yo + AY (5.23)

mow = mg + Zy + AZ

Tua0p = Lo + AL
Zy04 = Mo + AM (5.24)

7..00 = Nog + AN

86 = &q
8¢ = op (5.25)
op = or
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In the above equatior& X,AY ,AZ denote the perturbed values of the external aerodynamic
forces andA L,AM,AN denote the perturbed values of the moments about the CG. Yhben
helicopter is at trim, the trimmed values of the moments abwiCG will be zero. In addition,

only the trimmed force componeit, is compensating for the gravitational force. Hence, at:trim

du = —go + AX/m

50 = gé¢ + AY/m (5.26)
ow =AZ/m
0p = AL/ T,
8¢ = AM/T,, (5.27)
8 = AN/Z.,.,

5.9 Stability and Control Derivatives

The last step towards the linearization of the initial rigimdy equation relates to expressing
the perturbed values of the external aerodynamic forcesraomdents in a linear way. The analysis
of the perturbed external aerodynamic forces and momelhbsvothe assumption that the latter
are continuous functions of the helicopter disturbed nmotiariables and the helicopter controls
[20, 70, 79]. The linearization of those perturbed values\yery common method with very prac-
tical results although it is not based on a consistent madkieat background, and to this extent
there might be cases that this modeling method will not pleédequate results [20, 79].

Due to the assumption that the perturbed forces and momentsractions of the disturbed
values of the helicopter's motion and controls, it followatthe former can be expressed as a
Taylor series. The linear form of those quantities followsleglecting high order terms. Notation
wise, the expansion of the aerodynamic force (or momen®iisalized by the mass (or corre-

sponding inertia). An example is the expansion of the aarachic moment\ L, as:
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1 1 0L 1 0L 1 OL 1 0L
—AL=—— e —— it ——ba...+ ——duy; 5.28

whereu; denotes a helicopter’s control variable. Typically, thedarcts of the partial derivatives

are notated i.e as:
1 0L

L,=—— 5.29
Lo OU ( )

The above partial derivatives, with respect to the heliedpiperturbed motion variables and con-
trol inputs, are called stability and control derivativesspectively. Those derivatives are calcu-
lated under the trim flight condition. The calculation of #iability derivatives is beyond the
scope of this work; however, details may be found in [7, 79,88. In general not all stability
derivatives are necessary for linearization of the foracamaments. As mentioned in [70] an im-
portant part of system identification is to decide whichives are important in the calculations

of the perturbed forces and moments. Everything will talee@lat hover.

5.10 Model Identification

The previous Sections of this Chapter provided an outlinb@frequency domain identifica-
tion method for helicopter modeling. This Section presémsidentification results obtained by
CIFER® for a small scale helicopter, operating in a flight simulaovironment. The flight tests
throughout this work are conducted using ¥wlane flight simulator for a RRaptor 90 SE
helicopter. At first, the description of the experimentatfirm is given. The parametrized model
with the associated stability derivatives is also providéfler the presentation of the parametrized
model, the set-up and final results of the identification doce obtained bEIFER® follow.

Finally the accuracy of the extracted model is validatedhettme domain. The end result of this

Section will be a linear dynamic system representing thictyler response at hover.
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5.10.1 Experimental Platform

The system identification accuracy and the performanceeotdintroller designs are evaluated
by using the commercial flight simulat-Plane The helicopter model iXX-Planeis treated as
the “black box” portion of the problem, since no a-priori kriedge of the model parameters is
used in the identification process or the control despflaneis an awarded flight simulator
certified by the Federal Aviation Administration (FAA).

Apart from the realistic flight simulation capabilitie$;Planeincorporates a series of addi-
tional useful features, making it an ideal solution for expentation and validation of unmanned
flight. The user has the ability to modify and customize thoselels in order to achieve the de-
sired flight characteristics. In additioX;Plane supplies a plethora of flight data, which are re-
quired for the model identification process and the congetiback. The main advantage)ef
Plang in comparison with other simulators suchMirosoft's Flight SimulatorandFlightGear,
is the ability to import and export real-time data. This igafticular importance, since the control
inputs can be obtained by an external autopilot. In additio@ autopilot requires the helicopter’'s
state at every sampling instant, which is available by thmeed data oK-Plane

The helicopter used for experimentationdrPlane is a customizedRaptor 90 SERC heli-
copter, based on thRaptor 70flight model [19]. The basic specifications of this model can b
found in Table 5.1. Th&-Planehelicopter model, has been additionally calibrated by an ex
perienced pilot, in such a way that the flight behavior of #itel will accurately resemble the
behavior of the actual helicopter. However, in the softwaalel, the yaw rate exhibits significant
sensitivity to the pedal input. This sensitivity in the yaate results from the absence of a gyro
feedback mechanism in the simulator model. The gyro is @#yeature of actual small scale
helicopters and inserts additional feedback for contrglthe heading.

The experimental platform, in which the flight testing tod&qe, is based on a communica-
tion interface betweeMATLABSIMULINKandX-Plane The code of the control algorithm is
developed and stored BIMULINK. At every sampling instant, the control algorithm receives

the state measurement frofaPlane and outputs the control commands. The flight simulator
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Table 5.1: Experimental helicopter model basic specifcati

Full length of fuselage 6.6 (ft)
Full width of fuselage 1 (ft)
Total height 212 (ft)
Main rotor radius 3 (ft)
Tail rotor radius 0.7 (ft)

Main rotor designed angular speed.250 (RPM)

Tail rotor designed angular speed 5000 (RPM)

Full equipped weight 16 (Ib)

receives the control commands and visualizes the flightresgp The communication between
SIMULINK andX-Planetakes place through a User Datagram Protocol (UDP) corareciihe
block diagram of the communication interconnections idated in Figure 5.1. The commu-
nication of the software packages is based on the work pieém[19]. The sampling rate is
slightly variable around an average value. This averageevedn be chosen by the user and it has

a maximum value of00H z. Most of the experiments were contacted@# -.

5.10.2 Parametrized State Space Model

One of the most critical parts in the frequency domain idmatiion method is the determina-
tion of the parametrized model. As indicated in Section $8 key challenge is to decide about
which stability derivatives should be included in the depshent of the parametrized model.
The linear parametrized model used for parameter ideritdicaf theRaptor 90 SHEs based on
Mettler's model that is described in [70—72] for the Caredygiellon’s Yamaha R-5@nd MIT’s
X-Cell .6Q
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Helicopter

control inputs

v

Yiay

X-Plane
~~ UDP ~~ UDP
g measurments
e

Figure 5.1: Block diagram of the experimental platform’sncounication interface.

The structure of the parametrized model proposed by Méttlsrbeen already successfully
used for the parametric identification of several helicoptef different sizes and specifications
[8, 10, 27, 28, 89, 90]. The ability of this model structureegtiablish a generic solution to the
small scale helicopter identification problem is based amimportant factors: The first factor
is that Mettler's parametrized model provides a physicalBaningful representation of the system
dynamics. All stability derivatives included in this modeek related to kinematic and aerody-
namic effects of the fuselage and the main rotor. The secomgbonent is the ability to represent
the several cross coupling effects that dominate the rghcanotion. This ability stems from the
integration of the rotor model with the linearized equagiaf motion.

The adopted parametrized model in this work has two maiermdiffces with respect to Met-
tler's model. The first difference is the absence of the Biaibar dynamics. The stabilizer bar
provides additional damping to the pitch and roll rates.sThechanism is not included in tie
Plane Raptor 90 Selicopter model. In addition, as mentioned in Section A.1ihe Raptor does

not include a gyro feedback. The absence of the gyro resultsriy high yaw rate response to
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the pedal input. This fact was an obstacle in the applicaiidhe frequency sweeps of the pedal
command. Small sinusoidal oscillation of the pedal resliltevery high deviations of the yaw

rates. To tackle this problem, the pedal input used was:
Uped = —ApT + Uped (5.30)

where)\,. is a positive gain. This was a practical way to provide sonditiahal feedback to the
yaw response, in order to conduct the experiments. Thedrexyusweep excitation is applied
through the inputi,., instead of a direct transmission througfy;. Although the experiments
associated with the pedal command were conducted in closgd this did not create a problem
in the identification procedure. The additional yaw damgiogn the feedback term in (5.30) is
absorbed by the stability derivativé,. In this case, it is important to clarify, that the paranetd
model considersi,.q as the pedal input command.

The parametrized model represents the linearized dynashibe perturbed states and con-
trol inputs of the helicopter from a trimmed reference fligbhdition. The trim operating con-
dition considered is the hover mode. Although the paramerirmodel is associated with the
perturbed values of the states and inputs, for notationlgiitypthe §'s defined in Section 5.8 will

be dropped. The linear state-space parametrized modeiis gy:
= Az + Bu

where the state and control vectors are, respectively:

I

_ a7
r=uvh pgpabwr and u. = [Uon Ulat Ucol Uiat]

The matricesA and B of the parametrized model are composed by the stability antt@ deriva-

tives of the helicopter. The state space matrices of thexgtrized linear model, for thRaptor
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90 SE are:

X, 0 g0 0 0 X, o o ol [o o o o]
0 Y 0 g 0 0 0 Y 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0o 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
| M My 000 0 My 00 0 JO0 0 0 0
Ly Ly 0 0 0 0 0 Ly 0 0 0o 0 0 0
0 0 0 0 -1 0 —1/rp A, 0 0 Alon At 00
0 0 0 0 0 -1 By —l/7p7 0 0 Bion Bt 0 0
0 0 00 0 0 Zi Z Zu % 0 0 Zg O
(0 N 0 0 0 N, 0 0 No N |0 0 New Npea

To finalize the description of the parametrized model, wegairg to provide some additional
details for some of the key stability and control derivadizé the above matrices. Since the trim
operating condition is the hover mode, it is assumed thatrhgnitude of the main rotor thrust
will be equal to the weight of the helicopter. Theref@ig = mg. Based on (4.31) the linear

velocity stability derivatives can be approximated by:

o~ LOX _ 10(-Tya
“" m da m Oa
1 8Y_ 1 9(Tyd) -
T

The above equations impose a constraint to the valugg, @ndY;, reducing the number of the
unknown parameters in the parameter estimation phased Bas@.33), the stability derivatives

for the pitch and roll moments, can be calculated by:

1 oM La[(lhTM + Kﬁ)] a Iymg + Kg

Ma = — 0 =
Izz da Izz da I:m:
B L@_L - ia[(lhTM + Kﬁ)] b - lymg + Kg
YT I,00 I, b I,
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Some additional stability derivatives that require furtblarification are the following:

e A, Bion: These stability derivatives are added to the flapping dycsuo capture poten-

tial unmodeled off-axis effects.

e M,, M, andL,, L,: According to [70], these speed derivatives are includechfmure the
effect of airspeed to the angular dynamics. In theory, tiggian dynamics are not affected
by the airspeed. It would make more sense to include theneinatior dynamics. However,
as indicated in [70], the identification results are sigaifity better when those moments

are included in the pitch and roll equations.

As mentioned earlier, the above parametrized model prewadesxcellent generic descrip-
tion of the small scale helicopter dynamics. The dimensairiee parametrized model can be
increased by the inclusion of the stabilizer bar and gyrdifeek dynamics. The challenge is
determine which of those parameters should be includeceimibdel and the determination of

their arithmetic values.

5.10.3 Identification Setup

The identification procedure for thRaptor 90 SEstarts with the collection of the experimental
time domain flight data. For the collection of each flight d&teord, the helicopter is set to hover
and a computerized frequency sweep excitation signal iseapjo one of the four control inputs.
While the frequency sweep is executed by the primary inputtefest, the rest of the control
commands should maintain the helicopter in the vicinityhef teference operating point. In ad-
dition, as indicated in Section 5.7, the secondary inputsilshbe as uncorrelated as possible from
the main input. For each control input, five to six flight rat®are collected. The bandwidth of
the excitation signal is ranging betwee rad/sec-28 rad/sec. The computerized sweeps ap-
plied are based on (5.18)-(5.20). The minimum and maximequiency of the excitation sweeps

as well as the duration of the flight records, for each cornitalit are given in Table 5.2.
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Table 5.2: Frequency sweeps parameters. Those parameterspond to (5.18)-(5.20).

Wnin Winaz Trec

(rad/sec) (rad/sec)  (sec)
Ulon 1 28 Tz
Uit 0.8 28 TTax
Ueol 0.3 27 ATz
fped 0.8 2% TThas

For each flight record, the maximum frequengy,.., of the corresponding excitation signal is
slightly varied from the value given in Table 5.2. This véioa will produce a different excitation
signal for each flight record. Identical excitations do n@vide additional spectral information.
The sampling rate of the experiments was s@&0& . X-Planeprovides availability to all the
helicopter states and control inputs. The collected measents for the identification process, are

the following:
e Euler angles, 0, ¢
e Angular velocitiesp, ¢, r
e Body frame accelerations, v and linear velocityw.

For translational motion, the body frame accelerations were chosen instead of the velocity
measurements andv, respectively. The body frame acceleration measurementhdse direc-
tions provide a more symmetrical response around the trioeyé#acilitating the calculations of
the respective FFTs.

After the collection of the time domain experimental datighti records excited by the same
primary control input, are concatenated into a single cdhe concatenated flight records are
additionally filtered by a low pass filter with a cutoff frequey of 13 Hz. The time domain ex-
perimental data are inserted to BEER® software. The three modul&RESPIDQ MISOSA

andCOMPOSITEprocess the time domain experimental data to produce aduiglity MIMO
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Table 5.3: Selected frequency responses and their corrésgpfrequency ranges (ifud/ sec).
The dashed entries indicate that the specific input-outgintwas not included in the identification
process. The bold entries highlight the-axisresponses.

Ulon Ulat Ueol Uped
u 0.5-12.5 — — —
0 - 0.51-22 — -
w - — 0.20942-27 —
b . 0.51-27 - .
6 0.5-18 — — -

p 05—18 0.51-27 - -
¢ 0518 0.51—27 - -

T — 0.51 — 27 1-10 1-10

frequency response database. This database is compodeeidontlitioned frequency responses
andpartial coherencegor each input-output pair.

After the calculation of the flight data frequency respon#ies next task is the extraction of
the parametric modeCIFER® uses théDERIVID module to determine the parameters of the
state space model, such that the estimated frequency sesptrom the latter, are the best fits to
the flight data frequency responses.

The first action required by the parametric modeling prote#se determination of the flight
data frequency response input-output pairs, which willoéuided in the identification process.
From these frequency responses, the frequency range méshshould also be determined. For
the Raptor 90 SEthe selected frequency responses and their corresporatiggs are depicted
in Table 5.3. The criterion for the frequency response $eleds the coherence functioy?. Fre-
guency responses for which the coherence function hassvgheater than.7 over the desired
frequency range of the model will be included. Frequencpoases withy < 0.7 over their entire

range are dropped.
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After determining the frequency response pairs that willnoéuded in the identification pro-
cess, we are ready to proceed with the extraction of the spatee model. This part initially re-
quires the determination of the structure and order of tharpatrized state space model. The
selected parametrized model is described in Section 5.I0&next step is to decide about log-
ical initial guesses for the values of the model paramef2ERIVID uses an optimization algo-
rithm which calculates the parameter vedibrsuch that the cost function defined in (5.3) for each
input-output pair, is minimized. The optimization algbnt is based on an iterative robust secant
algorithm that reduces the phase and magnitude error betiveestate space model and the flight
data frequency responses. The execution of the optimizatgorithm continues, until the average
of the selected frequency responses cost functigns minimized.

The extraction of the parametric model is an iterative pdace, which continues until the
most suitable stability and control derivatives of theestgiace model are selected. In order to
determine which stability or control derivatives are goiagarticipate in the state space model,
apart from the frequency responses cost functiD=RIVID provides two additional statistical
metrics. The first one is the percentage of the Cramér-Rag lfGend for each parameter. The
CR bound gives a lower bound of the standard deviation of giharpeter. A high CR bound in-
dicates that the parameter is unreliable and should bealifigd from the model, or fixed to a
certain value. The second statistical metric is the peagenof the insensitivity of each parameter
with respect to the cost function. A high insensitive parenwill have a minimal or any effect to
the calculation of the cost function. Therefore, this paetanshould be dropped from the model.
A summary of the guidelines for the selection of the statespaodel’s derivatives based on [105]
is:

e J, < 100

e CR% < 20%

e Insensitivity % < 10%

The identified stability and control derivatives for tRaptor 90 SEwith their respective CR

bound and insensitivity percentage, can be seen in Tabld Belon-axis frequency responses,
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obtained by the flight data and those predicted by the staigespmodel are given in Figure 5.2.
The same comparison for the off-axis responses is givergiar€i5.3. The identification results
illustrate a very good fit between the frequency responsesraal by the flight data and those
predicted by the state space model. The cost value for eaghdncy response of the input-output
pairs that participated in the identification process, @gicted in Table 5.5. The average cdst is
well below the suggested guideline value. Those resulisaite that the identification procedure
has accurately extracted a linear state space model &fap&r 90 SElynamics.

Table 5.4 indicates that some of the identified parametdribieigh CR bounds and in-
sensitivities. The larger values are encountered in tmsl@donal velocity damping derivatives
X, andY,. The same issue with the specific parameters was also eecedribr theYamaha
R50model described in [70]. Although the sign and the value isf plarameters makes sense,
the statistical metrics indicate that they are completeheliable. According to [70], the large
uncertainty of the specific stability derivatives resulfiemn the lack of low frequency excitation.
High statistical metrics are also associated with the speeslatives of the roll and pitch rates.
In particular,M,, and L,,, L,, exhibit very high CR bounds and insensitivities. Those ipaxigrs
could be dropped from the model without sacrificing the aacyiof the identification results.
However, they were intensionally preserved to keep the §itak space dynamics as close as
possible to the parametrized model.

Finally, the mismatch in the heave responses depicted ur&i5.2, indicate that-Plane ac-
counts for the main rotor inflow dynamics. The most imporfzartameters of the state space model
are the main rotor flapping spring derivativis, and L;. The high value of those two variables
indicate the thérkaptor 90 SHs a super maneuverable and highly agile helicopter. Thisama
anticipated result since small scale helicopters of tipe ttyave very rigid blades. Apart from the
excellent fit of the actual and predicted frequency respmribe identification result indicate that

the flight simulator may duplicate real flight applications.
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Table 5.4: Linear state space model identified parametéws dashed entries indicate that the
specific derivatives were not included in the state spacesmod

Value CR % Insensitivity % Value CR % Insensitivity %
A matrix
Xy —0.03996 118.7 58.24 B, 0.6168  9.090 1.923
Y, —0.05989 1274 62.24 Zq — — —
M, 0.2542 12.25 4.195 Zy - — —
M, —0.06013  28.95 7.091 Zw —2.055 7.351 2.546
M, 307.571 6.815 1.097 Ly — — —
Ly —0.02440 36.81 10.63 N 2.982 6.991 1.908
Ly —0.1173  246.6 94.13 N, - — —
Ly 1172.4817 5.751 1.462 Ny —0.7076  15.95 4.400
Ap 0.7713 8.896 1.860 N, —10.71  6.729 1.233
g —9.389 3.331 0.9953 1/7f 30.71 7.474 0.9838
B matrix
Aon 4.059 3.005 0.9285 Zeol —13.11  5.026 1.688
A —0.01610 14.66 3.356 Neor 3.749 7.161 2.602
Bion,  —0.01017  23.79 7.206 Nped 26.90 6.189 1.825
Biat 4.085 2.900 0.8280
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Table 5.5: Transfer functions costs for each input-outp@t p

W/ 54.087
0/uon  56.108
p/ulon  48.502
q/Uon,  60.196
Ou 29.704
O/us  36.271
p/uee  38.068
q/uee  55.421
r/uge  42.551
w/uey  89.496
T/Uucor  20.147
P flipeq 20.178
Average 45.894
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Figure 5.2: On-axis frequency responses of the flight daléd(kne) and frequency responses
predicted by the state space model (dashed line).

86

www.manharaa.com



0 - Q/Ulat o-p/ulon 45-r/ulat
o
2
< —20- -20 \’/\. 10 4
e}
E: ’_”’A
S -40- -40 -25-
©
=
-60 :  -60 : :  -60 : : )
~200- -150- -100+
£ -300- < ~250- 200
~ N
] N X
& -400- -350 -300
o
-500 : \ -450 : : \ -400 : ; )
1 11 1
8 0.9 - 0.9 - 0.9 -
Q
£ 08 0.8 - 0.8 -
S
S 07 0.7 - 0.7 -
10° 10' 10° 10" 10° 10' 100 10" 10° 10' 107
Frequency (rad/sec) Frequency (rad/sec) Frequency (rad/sec)
30-0/ulon 30-¢/ulat 3-T/Ucol
o
z
o 10 10 -4+ \
k-]
2
S -10- -10+ -1+ N
©
=
-30 . . =30 . . , -18 . . ,
0- 0- 25 -
=)
@ -100- -100 —_— -25- X
g x ) \\
[ -
8
& -200- -200 ~75-
o
-300 : : =300 : :  -125 ; ; )
1 19 17 S
g 09 0.9 g 0.9
] &
£ 08 0.8 £ 08
K= <
(<) o]
S 0.7 0.7 O 0.7
107" 10° 10’ 10° 107" 10° 10' 10° 10" 10° 10' 10°

Frequency (rad/sec)

Frequency (rad/sec)

Frequency (rad/sec)

Figure 5.3: Off-axis frequency responses of the flight datdiq line) and frequency responses
predicted by the state space model (dashed line).

www.manharaa.com



-6
0.7

-0.7
0.7

-0.7
0.7

-0.7
0.7

-0.7
1.5

0

-1.5

Figure 5.4: Time domain validation.

88

Ulon 0.1, Ulat 05, Ucol 0 aped
ol | —— 02 —/j_/— AL N
-0.1 -0.1 -0.3
i(m/sec?) 6. u(m/sec?) 6. u(m/sec?) 6. u(m/sec?)
—— 0 — 0 —
-6 -6 -6
o(m/sec®) 6. v(m/sec?) 6. v(m/sec?) 6. v(m/sec?)
e —— ] 0 =b./\ﬁ__ 0 0= ————
-6 -6 -6
w(m/sec?) 6. w(m/sec?) 6. w(m/sec®) 6. w(m/sec?)
———— e ——— 0F —— 0" — 0p
-6 -6 -6
0(rad) 07, 0(rad) 07, 0(rad) 07, 0(rad)
e 0 0
-0.7 -0.7 -0.7
¢(rad) 0.7, ¢(rad) 0.7, ¢(rad) 0.7, ¢(rad)
-~ N 0 0
-0.7 -0.7 -0.7
p(rad/sec) 07, p(rad/sec) 07. p(rad/sec) 07. p(rad/sec)
— 0 F\;f-' 0 0
-0.7 -0.7 -0.7
q(rad/sec) 07 q(rad/sec) 07, q(rad/sec) 07, q(rad/sec)
— N 0 f————— —— O 0
-0.7 -0.7 -0.7
r(rad/sec) 15, r(rad/sec) 15. r(rad/sec) 15, r(rad/sec)
0 o—— 0 ——o-/\’__
-15 -15 -15
0o 1 2 3 4 5 6 0O 1 2 3 4 5 6 0o 1 2 3 4 5 6 0 1 2 3 4 5 6
time (sec) time (sec) time (sec) time (sec)

www.manharaa.com



5.10.4 Time Domain Validation

The final step of the identification procedure is the valolaif the extracted state space model
in the time domain. The time domain validation is importartdvaluating the predictive accu-
racy and limitations of the identified model. The time donféight data used for the validation
part are obtained by applying special control inputs whighdissimilar with the ones used in
the identification process. These inputs are steps or rgwgyinhmetric doublets. These types of
inputs are used due to their relative large frequency cofit@h. The time domain responses of
the identified model obtained by the integration of the stace equations, are compared with
the corresponding responses of the flight data. The inputeetstate space model used for the
integration process are identical with the ones obtainetthéylight data.

To obtain the validation flight data, four individual fliglgaords are collected, each corre-
sponding to one of the control inputs. In every individuallfli record, a roughly symmetric dou-
blet is applied by the corresponding primary input, while tast of the control commands retain
their trimmed value. The doublet should be applied in suclag that the on-axis responses of the
corresponding input are sufficiently diverged from the tried condition. A large deviation from
the operating point will reveal the identified model preidietimitations. Before each doublet is
applied, the helicopter is set to hover mode. The time domwalidation comparison results are
depicted in Figure 5.4, in a similar way with [70]. The timentgin responses for each record are
illustrated in columns. The first row shows the executed tkiwdf each primary control input.
The validation comparison indicates an excellent fit betwtbe predicted values from the linear
state space model and the flight data. Therefore, the idmhtifiodel provides a reliable dynamic
representation of the helicopter around the hovering dipgraondition and it is appropriate for

control design.
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5.11 Remarks

The identification process described in this Chapter censibdovering as the reference flight
operating point. Therefore, the model is limited to an arfeth@flight envelope around the spe-
cific operating condition. To derive a linear model for aeli#éint flight mode, the same procedures
should be repeated. However, the execution of the frequemnegps for a different reference flight
condition from hover is a very tedious process. For examplie case of forward flight, the
helicopter should cruise in a constant translational \yglachen the sweeps are applied. This
experimental procedure introduces practical limitatidrisstly, it is very difficult to sustain a
constant translational velocity in all the flight records.addition, the retainment of the helicopter
around the desired operating point when the sweeps areedpplan additional limiting factor.

This limitation is more apparent when the low frequency iporof the sweep is executed. To this
extent, the experimental data acquired from the cruise rhade inferior quality compared with
the data collected when the helicopter is in hover. Theegfitre system identification modeling
method has potential shortcomings in the development e&timodels which correspond to flight
modes different from hover. Having decided the order andthesture of a generic parametric
linear helicopter model at hover, the next step is the dgveémnt of a systematic procedure for
the design of linear helicopter flight controllers. The nékiapter provides a position and heading
tracking controller based on the linear helicopter model.

The individual experiments are arranged in columns for thebted -input experiments. The
first row shows the piloted doublet applied to the respeatosrol input and the remaining rows

show the responses to the vehicles states.
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Chapter 6: Linear Tracking Controller Design for Small Scale Unmanned Helicopters

In the previous Chapter we provided an analytical methagiofor the extraction of a linear
dynamic model for a small scale helicopter based on [70,.1a6Hern control techniques are
model based, in the sense that the controller architeceperals on the dynamic description of
the system. Therefore, the knowledge of the helicopteatiglgnamic model is very valuable
for the design of autonomous flight controllers. This Chaptesents a systematic procedure for
the design of a flight controller based on the linear dynamicesentation of the helicopter. The
controller objective is for the helicopter to track predetirreference trajectories of the inertial

position and the yaw angle.

6.1 Helicopter Linear Model

The goal of this Section is to derive a flight controller basadhe helicopter’s linear dynamic
model. The proposed controller should also be applicabémyossmall scale helicopter. This claim
requires the adoption of a nominal linear dynamic modeksting, which is capable of capturing
the dynamic behavior of a wide family of small scale heliespt An ideal solution to this require-
ment is the use of the parametrized model described in $€sti®.2 as a basis for the controller
design.

The specific model represents the dynamic response of tleepir perturbed state vector
from the reference flight condition. In this case, the rafeecoperating condition is hover. At

hover, the trim values of the linear and angular velocity are

vE=wE =100 07T (6.1)
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From the above equations it is apparent that when the hédicoperates around hover, the heli-
copter’s state is equal to the perturbed state vector aheueference operating point. The heli-
copter linear model is based on Section 5.10.2 and it is te@dwere for clarification purposes.
The adopted state space model is:

& = Ax + Bu, (6.2)

where the state and control vectors are:

T = [u v 0 ¢ qpa bwr ¢]T and Ue = [ulon Ulat Ucol ulat]T (63)

The matricesA and B of the state space model are given by:

X, 0 —g 0 0 0 X, 0 0 0 0
0 Y, 0 g 0 0 0 Y, 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0O 0 0 0 0 1 0 0 0 0 0
M, M 0 0 0 0 M, 0 0 0 0

A=|L, L, 0 0 0 O 0 Ly 0 0 0
o 0 0 0 -1 0 —-1/74/ A 0 0 0
o 0 0 0 0 -1 B, ~—l/p 0 0 0
0 0 0 0 0 0 Z Zy  Zw Zy O
0O N 0 0 0 N, 0 0 N, N, 0
0O 0 0 0 0 0 0 0 0 1 0
(00000 0 Aton Bion 0 0 0]

BT 000000 Ay Ba 0 0 0
0000O0GO0 O 0 Zet Neat 0
000000 0 0 0 Npea O]
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The above state space representation is slightly différent the parametrized model of Sec-
tion 5.10.2, since it includes the yaw dynamics given/by- . The yaw dynamics are excluded
from the identification process since they do not includearknown stability derivatives and
also the yaw is decoupled from the rest of the state variablewever, the controller design re-
quires the inclusion of the yaw to the state space model. Vaeb dynamics constitute a coupled
linear system of the helicopter motion variables and thenmator flapping dynamics.

The order of the above model can be increased by includingythamics of the stabilizer bar
and the yaw damping system. These two subsystems provideadtddamping to the angular
velocity dynamics. Since they constitute additional fesksources of the angular dynamics,
their presence in the state space system does not influemcerttroller design. Therefore, their
effect has been omitted from the helicopter model.

The proposed linear model (usually with the inclusion ofytaer gyro dynamics) has been
successfully adopted for control applications in a largeber of small scale unmanned heli-
copters [8, 10, 27, 28, 89, 90]. To this extent, the linear ehpdoposed by [70] provides a gener-
alized and physically meaningful solution to the developt@# practical linear models for small
scale helicopters. For any particular small scale helempihe numeric values of the matricas
andB entries can be estimated by following the identificationcpure described in the previous

Chapter.

6.2 Controller Outline

Having established the helicopter linear dynamic model it step is the design of the au-
tonomous flight controller. The controller’s ultimate oftjege is for the helicopter to autonomously
track predefined bounded position and heading referenjeetmaies. The linear model given in
(6.2) does not include the helicopter position dynamicsréfore, the controller design starts
with the tracking problem of a reference translational g&yoand heading profile. The integra-

tion of the position tracking to the control problem follawihe initial output of interest of the
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helicopter is:

y=|uvw zZ)]T =Cx (6.4)

The first design task is for the helicopter to track the refeesoutputy, = [u, v, w, wT]T.
The tracking problem requires the determination of therobisignalu.(¢) as a function of the
state variables of the vecte(t) and the reference outpyf(¢) (with its higher derivatives) such

that:

Jim [ly() = ur(8)] = 0 (6.5)

while the state of the system(t) and, thus, the control inpui.(¢) remain bounded for any bounded
reference outpug, (¢). An additional difficulty of the tracking control problemftise availability

of the state variables from measurements. Not all of thebjeler states can be measured, hence
only a subset of the state variables can be used by the dential feedback purposes. In real

life applications, only the helicopter motion state valéghcan be directly measured. On the other
hand, the flapping angles are typically absent from the avi@lmeasurements. It is assumed that

there is availability of the following measurement vector:
ym=[uvwpqgro ¢y’ =Cua (6.6)

The complete state can be reconstructed for control pusgmse Kalman filter or a state estima-
tor [3, 23, 41]. Both of these choices increase the systerardigs order. However, in manned
flight applications, the pilot is able to operate the helteopvithout accounting for the flapping
angles. Therefore, we set the same requirement for the uredarase restricting the controller’'s
feedback information only to the measured vegtgr This problem is classified as output feed-
back. Wheny,,, = x, then we have full state state feedback.

In the case of linear systems, the tracking problem with aufigedback can be tackled with
two different approaches. Tracking with integral contnodldracking via the use of an internal
model. In the internal model approach, the reference owsligutl is generated by a fixed refer-

ence dynamic system driven by a bounded input. This refereypstem is callethternal model
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The structure of the internal model is used by the contrgilelding a dynamic feedback scheme.
Typical application of such control design is met when tHenence output is a constant signal or
sinusoidal with constant frequency [43]. The internal mMaggroach has very important robust
and adaptive properties, however the design is relativeiyaiex. In the case of MIMO systems
the generated internal model should consider the relatigees vector that corresponds to the
output (the relative degree vector components indicatesrhany time each output should be
differentiated until the input appears). Likewise with theegral control, the use of the internal
model becomes relatively complicated when the desiredubiggan arbitrary continuous signal of
time. More details about the internal model approach carobgd in [9, 36].

The use of integral control for the tracking problem resiitthe design of a dynamic feed-
back controller. Integral control provides a reliable andsistent solution when the desired output
has constant values over time. However, in the case of a t@amy@ng output profile, the integral
control design requires the determination of a steady stafonser,(¢) and a steady state con-

trol inputw*(t), such that when(¢) tends toy,(¢), the following equality holds:
Tss = Axss + Buy® (6.7)

The determination of the pafts,, u:°) is a difficult task, rendering the integral control design
impractical for the tracking problem of a time varying outpMore details about the integral
control of linear systems can be found in [23, 43].

Instead of following the above standard methodologies, dopta tracking design which is
simple, mathematically consistent and well suited to thexiijc problem. The first part of the
design involves the determination of a desired state vagtarhich is composed only by the
components of the reference output vegtoand their higher derivatives. Denate= x — x4
the error between the actual helicopter state and its degaee. The desired vectey should be

chosen in such a way that, given:

Jim [le(t)]| =0 then T [y(t) — y.(5)| =0 (6.8)

95

www.manaraa.com



The proposed controller design provides a recursive methgg for the derivation of a desired

state vector:; and a desired control input! that satisfies (6.8) and also:

iq= Azg+ Bul (6.9)

The role of the desired state vectqy and the control input? is identical with the steady state
vectorz s and the input vector?® which is required by the integral control methodology. The
contribution of the proposed design is the development @hals recursive procedure for the
derivation of the paifz4, u¢) that satisfies (6.8)-(6.9).

The choice of the paifz,, u?) is based on the backstepping design approach. Details about
the backstepping design methodology can be found in the dgipé\. In the particular case the
backstepping design is not used for the stabilization ofraeking error but it is restricted to the
determination of the desired state and control input vect®ackstepping provides a systematic
methodology for the output tracking problem of systems audfsack form.

Due to the presence of the stability derivatieg andY;, in (6.2), the helicopter model can
not be categorized in this class of systems. A common siroglifin practice, followed in [37, 47,
66], is to neglect the effect of the lateral and longitudifteites produced by the TPP tilt. Those
parasitic forces have a minimal effect on the translatiolyalamics compared to the propulsion
forces produced by the stability derivativdg andY; (in (6.2) are denoted by g andg, respec-
tively). This assumption is physically meaningful and tesinto a linear system of feedback
form.

Systems of strict-feedback form are feedback linearizabtétherefore differentially flat.

The differentially flatness property is the key attributetd approximated system to which the
controller design is based on. A system is called diffeedlytilat when there exists output func-
tions (called flat outputs) such that all the state and inpatars can be expressed in terms of the
flat outputs and their higher derivatives [48]. Details atibe differential flatness property of

nonlinear systems may be found in [22, 107]. The conceptftdrdntial flatness has been also
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used in [47, 48] for the development of a nonlinear contrdiesed on nonlinear inversion for the
helicopter tracking problem.
Having defined the desired statg and control vector.¢, we introduce the stabilizing con-

troller of the system. The controller signal is construdbgdhe following superposition:

e = ud 4+ ul® (6.10)

Then the error dynamics take the form:

¢ = Ae + Buf® (6.11)

The above system is identical with the system given in (6[Bg difference is that the state space
vector is substituted by the error vector. The second cbotrmponent can be chosen from a
variety of output feedback techniques, such that the eri®rendered globally asymptotically

stable (GAS).

6.3 Decomposing the System

It is emphasized that the controller design must incorgaitad physical limitations of heli-
copter flight. A common mistake in the development of flighttcollers is the blind adoption of a
mathematical control scheme without considering the glaysitructure of the helicopter model. It
is typical that the flight control problem is forced to suitgesific controller design rather than the
controller design being tailored based on the problem. Al@hging and rigorous mathematical
control scheme will perform significantly poor in a real ldgpplication if the fundamental notion
of helicopter flight is disregarded by the designer.

The helicopter piloting fundamental intuition dictateattkhe cyclic commands;,,, andu;,;,
are used to manipulate the pitch and roll moments with utenaéjective the production of trans-
lational motion. The collective commangd,; controls the magnitude of the thrust of the main

rotor producing the necessary lifting force, while the pedenmand controls the heading of the
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helicopter. To this extent the ideal solution is for eachtem@rcommand to be as much indepen-
dent as possible from the others. The ideal solution to thblem is to construct 4 independent
SISO feedback loops for each control input. However, siheesystem is a highly coupled linear
system this approach can not guarantee a rigorous and negibally consistent stability analysis.
Having said that, a close inspection of the model structiwengn (6.2), indicates that the
helicopter dynamics can be separated in to two intercordestibsystems. The first subsystem
represents the helicopter longitudinal and lateral motidre second subsystem represents the

coupled yaw and heave dynamics. In particular, the latergjitudinal subsystem is given by:

Ty = Ayzy + By (6-12)
where:
zy=uvb ¢qpa b]T and uy; = [ujon ulat]T (6.13)
and:
Xy 0 —g 0 O 0 X, 0 0 0
0O Y, 0 g O 0 0 Y, 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0O 0 0 1 0 0 0 0
All: Bll_ (6.14)
M, M, 0 0 O 0 M, 0 0 0
L, L, 0 0 0 0 0 Ly 0 0
0 0 0 0 -1 0 =1l/rp A Ajon Alat
0 0 0o 0 0 -1 B, —1/7'f Bjon Bia

The yaw-heave dynamics subsystem is given by:

i'yh = Ayhflf'yh + Byhuyh + Dyhxll (6-15)

98

www.manharaa.com



Yaw-Heave subsystem

Lyn = Ayhl'yh + Byhuyh + Dyhxll

x
Longitudinal-Lateral subsystem "

Ty = Ayzy + Buuy,

Figure 6.1: Interconnection of the two helicopter dynansigbsystems.

where:
Ty = [ w T]T and w,, = [tcor uped]T (6.16)
and:
1 0 0
Ayh: 0 Zw Zr Byh: 0 Zcol
0 Nw Nr Nped Ncol

0000000 0
Dy=10 00000 Z, 2 (6.17)
000O0O0OT1 U0 0

The interconnection of the two subsystems is shown in FiguteThe controller design requires
that the following assumptions associated with the hetolnear model given in (6.2), should

hold:

Assumption 6.1. The matrix pair§ 4,, B;,) and(4,,, B,,,) are controllable.
Assumption 6.2. The matrixB € R®*4 has four linearly independent rows.
Assumption 6.3. The stability derivativeg, M, and L, are nonzero.

The above assumptions are substantially necessary amglittquired by the controller de-

sign. If the linear model does not satisfy all of the aboveditions then most likely the modeling
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identification process has lead to erroneous results. Téflct the fact that the linear model has
to be physically meaningful. Intuitively, from manned fligipplications, the pilot commands can
regulate the position and heading of the helicopter in alhefconfiguration space. Regarding
Assumption 6.1, lack of controllability indicates poor idiéication results, wrong model structure
or a helicopter that can not fly properly! In addition, eaghunhmust have a direct effect to the
helicopter's motion, therefore, Assumption 6.3 shoulddres well. Finally, ifAM, = 0or L, = 0
it implies that no moments are transmitted to the helicogtberefore, the above assumptions
provide a validity check of the helicopter linear model.

Before we proceed, we introduce a preliminary control actay the input vectors,,, u,, that
cancels out the coupling effect of the control derivatived aormalizes thés;, and B,,, matrices,

respectively. Hence:

uy = (BM) Ly Uy, = (B) Loy, (6.18)
where:
n Alon Alat " 0 Zcol
B' = B, = (6.19)
Blon Blat Nped Ncol

Based on Assumption 6.3 the above inverse matrices arenguar. Singularity in any of them
indicates erroneous parameter values. Substituting theegireliminary control actions the two

subsystems become:

&y = Auzu + Byuy (6.20)
j;yh - Ayhxyh + Byhvyh + Dyhl’” (6.21)
where:
_ 0 _ 0
B, = o Byh = 2 (6.22)
I I
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From the above analysis, the initial system is now viewedvasiiterconnected subsystems in
cascade form. The backstepping design is performed indepdy for each subsystem resulting
in the cascaded error dynamics of the helicopter. Stabiizaf nonlinear systems in cascade
has been extensively studied in [63, 94, 98]. Contrary tothidinear systems, the case for the
LTI systems is much more easier in terms of analysis. If therodler is designed such that the
two error dynamics subsystems are rendered GAS (by igntmmgqterconnection effect), then
the complete error dynamics system is rendered GAS, as We#.approach is based on the
separation principlewhich emerges from theuperposition propertgf LTI systems. The stability
analysis of the controller design is given in detail in thicfeing Sections.

At this point, the controller structure requires the desifjtwo independent feedback loops
for each subsystem. This approach results in a mathemugtizaisistent and systematic method-
ology, which reflects the intuitive flight notion. The latél@ngitudinal motion is regulated inde-
pendently from the heading and vertical motion of the hgliea The same decomposition of the

helicopter dynamics is also reported in [109].

6.4 Velocity and Heading Tracking Control

This Section provides a detailed presentation of the cthatrdesign for the velocity and head-
ing tracking of the helicopter. The control problem is foed®n the design of two feedback loops
for each subsystem. After the introduction of the two fee#tdaops the stability analysis of the

overall system dynamics is given.

6.4.1 Lateral-Longitudinal Dynamics
The longitudinal and lateral motion of the helicopter arédicectly controlled through the
cyclic inputs but rather via a sequence of intermediate tsvdine cyclic inputs produce pitch and

roll moments to the helicopter fuselage. Those momentstriesa change of the pitch and roll

attitude angles. The attitude change results in the tilhefttelicopter main rotor disc. By tilting
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the rotor disc the main rotor thrust is also tilted to prodti@necessary propulsion forces for
lateral and longitudinal motion. The effect of the transka&l forces produced by the flapping
motion of the the main rotor is parasitic and negligible canepol to the main source of propulsion,
which is the roll and pitch tilt of the main rotor.

As indicated in Section 6.2, neglecting the effect of théitity derivatives X, andY; is a
common practice that results in a more physically meanirdgaign. When the latter stability
derivatives are omitted from the helicopter model, ther&tlngitudinal dynamics have a strict-
feedback form.

The complete description of the longitudinal-lateral stgsm is given by:

Ty = Alflbl'u + Blﬂ)ll
Yu = Cuzy (6.23)

mo __ m
Y = Cjl'zy

where:

xu:[uv 9¢qpab]T
Uy = [Ulon 'Ulat]T
yu = [u v]"

yr=[uv 6 ¢qp”

In the above equationg;’ is the measurement vector available for feedbackyarid the output of
the subsystem. The reference output vectaf is= [u, v.]”. The matrixA/’, is identical toA,,
with the only difference that the stability derivativas, andY; are omitted. The interconnection
of the approximated longitudinal-lateral subsystem isshim Figure 6.2.

From Section 6.2, the first goal of the controller design lfids subsystem is to determine a

desired state vectar? and a desired control inpuf, with both of them being functions of thg
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1
on —>| &= —q— —a+ Asb , : :
vl “ a4 Tfa+ b0+ Vion a,b | ¢= Myu+ M+ Mua | q,p 0=q| 0,0 | u=Xu—gl Q> u

p = Lyu—+ L,v+ Lyb b=p =Y, v+ g > v
T u,v

Figure 6.2: Strict-feedback interconnection of the londjihal-lateral helicopter dynamics
subsystem. The terms associated withXheandY; stability derivatives are disregarded.

. 1
Vgt —>| b= —p— ;b"l‘Baa“r'Ulat
f

components and their higher derivatives, such for the egres z, — ¢ given that:
Jim [leal| =0 then i [y (t) — g7, (1)]| = 0 (6.24)

To do so the control law of this subsystem is obtained by theviing superposition:

Uf U{b

b on on

vy = vl ol = + (6.25)
Ud Ufb
lat lat

The initial task is to select the paiz?, v¢) such that they satisfy the requirment of (6.24) and also:
i) = Alj:bx% + By, (6.26)

If the pair (%, v?) satisfies the above equation then the error dynamics become:
én = Alle, + Byuf® (6.27)

The final step is the selection of an output feedback cor&mbﬂb which stabilizes:;, such that
the tracking objective of (6.24) is achieved.

For the derivation of the desired state vectfrand control input? we are going to apply
a recursive procedure based on the backstepping methgddlbg backstepping approach is
ideal for the control design of systems in feedback formhla tase, however, the backstepping
procedure is not used for the stabilization of the systenitlisionly restricted to the derivation

of the pair(zZ, v?) such that (6.24) and (6.26) are satisfied. The applicalwfityris approach
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is based on the fact that the longitudinal-lateral subsyssein strict-feedback form therefore it
is differentially flat. Therefore, the derivation of the ded state and the nominal desired input
based on the reference output is feasible.

The derivation of the error dynamics and the selection ofifgred states and inputs is going
to take place simultaneously. The basic idea of the reaiggigcedure is to start from the top state
equations of the subsystem and gradually derive the destadel variables and the error dynamics
of each level by moving downwards in each step, until thednotset of state equations is reached.
In each step the desired values of the state variables of lewels is chosen in such a way that
they cancel out the desired values of state variables othilgiels.

The procedure begins by deriving the error dynamics of testational velocity variables.

Therefore, one has:

éu=1'L—’lld=—Qld—i-Xu(eu—i-ud)—g(e(;—i-@d)
—— T/
u

= —ug + Xyug — 904 + Xue, — geg (6.28)

€y =V — Vg = —@d—i-Yv(ev—i-vd)—i-g(%—i-qﬁd)
v ®
= =04 + Yyvq + goqg + Xuey + gey (6.29)

The desired pitch and and roll angles are chosen such that#dmeel out the values;, vy andvg,

vq, respectively. More precisely:

1 . 1.
0, = —_g [Ug — Xyug) Og = 5 [0a — Yyvg] (6.30)

The choice of the desired translational velocity compos@&it; = u, andvy; = v, such that

when:

Jim [ffew 7 =0 then  Jim lyu(t) — yi(5)] =0 (6.31)
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It is apparent that the desired angles of (6.30) are funstdronly they;, vector components and
their first derivatives (i.ey = wq(i,, u,) andey := we(vr,v,)). The particular choice of
(6.30) is also physically meaningful since it indicate the desired attitude is proportional to the
reference acceleration and velocity. With the above choidbe desired roll and pitch angles, the

translational velocity error dynamics become:

€y = Xueuy — geg (6.32)

€y = Yyey + geg (6.33)
The attitude angles error dynamics are:

é9=9—9d=—9d+(eq+qd)
q

= —0g+qq+eg (6.34)

bp =& — da=—da+ (ep+pa)
p

= —Ga+pa+ e (6.35)

The desired values of the pitch and roll angular velocitiescdosen such that the cancel out the

effect ofd,; and¢,. Therefore:

qa = 04 Pa = b (6.36)

The roll and pitch attitude error dynamics become:

é9 = eq (6.37)
és = e, (6.38)
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Similarly, the angular velocity error dynamics are:

éq =q—qq=—qqa+ M, (eu + Ud) +M, (61, + Ud) +M, (ea + ad)
—_—— ——— —_——

u v a

= —qq + Myug + Myvg + Myag + Mye, + Mye, + Mye, (639)

ép =D — Pd = —Pd + Ly (ey + uq) +Ly (ey +vq) +Lp (e + ba)
~———— —— ~———

u v b

= —pg + Lyug + Lyvg + Lybg + Lyey + Lyey, + Lpey (6.40)

The values of the desired flapping anglgsandb, are chosen as:

1 .. ..
aq = 5 [4a — Muyug — Myvg] ba = o [pa — Luug — Lyvg] (6.41)
a

Hence, the angular error velocity dynamics, become:

éq = Myey + Mye, + Mye, (6.42)

€p = Lyey + Lyey, + Lyey, (6.43)
Finally, the flapping angles error dynamics, are:

) . ) 1
ba =G — g = —aq — (eq + qa) —— (ea + aq) +Ap (e + ba) +Vion
——  Tf —— ——

q a b
, 1 1 X
= —aq — qq — —aq + Apbg — g — —eq + Apep + vfon + vlfon (6.44)
Tf Tf
L : 1
éy =b—bg = —bg— (ep +pa) —— (ey + bq) + By (€ + aq) +viat
—— T —— ——
P b a

. 1 1
= —bg — pqg — Ebd + Baag — e, — T—feb + Baeq + vﬁn + vlj;bt (6.45)

The components of the control vectdf are chosen such that they cancel out the terms of all

the desired state values and only the error state variaghesin to the flapping error dynamic
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equations. Thus:
ds . 1 ds 1 1
Vjon = G4 + qq + T_fad — Apbg Vg = ba +pa + T_fbd — Baaq (6.46)

It is easy to verify that the derived pdir?, v) satisfies the differential equation of (6.26). The
components of¢ andv? are composed by the reference valugsindv, and their higher deriva-
tives up to the fourth order. Therefore the componentg;afhould belong t@*. The final form

of the longitudinal-lateral subsystem error dynamics is:

. b >, b
€y = Az]; ey + Buvljz

}/” — 6” (647)
m m
}/;l = Cll €u
where:
T
ey =lew €y €9 €y €q € €4 €]

Y = feu e ep eo o ol

The initial tracking problem of the longitudinal and latedgtnamics has been converted to
the stabilization problem of the error vectgr. The measurement vectd)” does have available
all the state variables of the system (6.47) since the flgppngles: andb can not be measured.
When the complete state vector of a system is not availableéaback purposes and only a
subset of the state variables can be used by the contrbiéer.the control law is classified as an
output feedback controller. In particular, instead of gnéging in the initial system the dynamics

of a state estimator, we require a static feedback contnobfahe form:

Uy = —KuYz;n (6.48)

107

www.manharaa.com



such that for the closed loop system:
ey = (Azjzb - BuKzzCZln)eu (6-49)

the closed loop matrixlff = A{;b — B, K,C™ is Hurwitz. A square matrix is called Hurwitz if all
of its eigenvalues have strictly negative real parts.

A very good study of the output feedback problem is given Bl ihd [100]. Stabilization
via output feedback can be achieved by two ways: Eigenvdaement and in the context of the
Linear Quadratic Regulator (LQR). The eigenvalue placdgrapproach, typically requires the
solution of very complicated heuristic algorithms for ttadatilation of the output feedback gain.
For this reason we adopt the LQR approach. In this case, jeetdle is to chosey;, of (6.48)
such thatA¢ is Hurwitz and, in addition, the gain selection minimizes tollowing quadratic

performance index:

0 T
Ju = / <617;Qllell + ('Uzjzb> Ru%’?) dt (6-50)
to

where@,, < 0 (positive semi-definite) an®,, > 0 (positive definite) are diagonal matrices. The
@, and R, matrices are the design parameters of the LQR controllez.primciple of the optimal-
ity problem is to regulate the state error vector to zeroh Wit least possible state deviation and
control energy. The trade off between control energy are skaviation is specified by the relative
values ofQ),, and R,,. For a larger weighting matri®,;, the control input is forced to be smaller
in magnitude relative to the state norm. Contrary, a laé@ematrix, requires that the error state
vector deviates less from zero by injecting more controtgye the system.

The LQR controller design for LTI systems with output feedbaas initially introduced in
[59]. The necessary condition for the solution of the abgutinaality problem is the existence
of three matrices namely,;, S, and P,;, which are solutions to the following coupled equations

[59, 74]:

T
0= (Af}) Sy + SuAY + Qu + (™ KT R, K, C™ (6.51)
cl T cl
0= P, (A”) L AYP, 4 I (6.52)
108

www.manaraa.com



Generally, optimal control with output feedback, resuttsiich coupled nonlinear matrix
equations [60]. There are several iterative algorithmgHersolution of the above problem. How-
ever, the most practical convergent algorithm that reswléslocal minimum solution is given in

[60] based on [74]. The iterative algorithm is the following

e Step 1: Initialize the iteration procedure by setting= 0. Determine an initial gaitk;, ,

such that thed?! | = Al® — B, K, ,C™ is Hurwitz.

e Step 2 (-th iteration): SetAf}m = A{;b — ByK,,,C™. Solve forS,, and P, the following

Lyapunov equations:

_ cl T cl m\T 7-T n
0= (AL,) Su+Sudil, +Q+ () K, RukCi
l T I pT
0= P (45,) + A5 PT+1

SetJ,, = tr(S,) and evaluate the gain update direction:
AK = BB, P ()T (Crpa (0)T) - K,
Update the feedback gain by:
Ky =Ky, +aAK
In the above equation chosec (0 1] such that the closed loop mattik!  is Hurwitz and:
Ady = [[Jumsr = Junll = [[tr (Spt1) — tr (Sp)l| < e

wheree is a very small number. IAJ, < e proceed to Step 3, else set= n + 1 and repeat

Step 2.
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e Step 3: Terminate the algorithm by settihg = K, .., andJ,;, = Jy ;1.

The disadvantage of the specific numerical algorithm, igelqeirement to guess an initial stabi-
lizing gain K, ,, at the first step of the algorithm. A practical solution tistbroblem is to initially
calculate the state feedback gain by a regular eigenvaheeplent algorithm. Then, omit the
entries that correspond to the unmeasured states, andeusasttof the gain components that
correspond to the measure states as the initial output ée&dimink, ,. The above algorithm was
presented because standard software packages sMoATAAB do not include built-in routines
for the calculation of the output feedback gain. Contrs\TLAB provides a complete set of
algorithms for the solution of generalized Lyapunov equadiand the extraction of full state

feedback gains via eigenvalue placement or performan@xiogtimization.

6.4.2 Yaw-Heave Dynamics

The goal of this Section is the design of the second contvglri@sponsible for the heading
and vertical velocity tracking. The yaw-heave dynamicssystem, is summarized by the follow-

ing equations:

i'yh = Ayhl‘yh + Byhvyh + Dyhxll
yyh = Cyhxyh (6.54)

mo__
yyh = Tyn

where:

e = [ r w]"
Uyp = [Uped Ucol]T

yyh - [¢ w]T
In the above equationg,, is the output vector angl’; is the measurement vector. The reference
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Ty
Uped —> = N,r + Nyw + Nyv + Npp + Uped r
Veol —»| W = ZypW + Zpr + Zoya + Zpb + veol

Figure 6.3: Interconnection of the yaw-heave helicopteratyics subsystem. The yaw-heave
dynamics are additionally perturbed by the longitudirsétal dynamics state vectoy.

output is denoted by;, = [¢, w,]T. The yaw-heave subsystem is in cascade connection with
the longitudinal-lateral subsystem via the matifly,. The interconnection of the yaw-heave sub-
system dynamics is shown in Figure 6.3. The design procadwsimilar with the one presented in
Section 6.4.1. The controller design requires the deteatian of a desired state vect@fh and a
desired nominal control inpwgh, such that when the errer, = z,, — xgh is regulated to zero,
then the outpuy,,, of the yaw heave subsystem asymptotically tracks the mnedereutput vector
y,,- The obvious choice of the desired yaw and heave velocity; is= 1, andwg = w,. Thus,
when:

lim [[fey ew]”|| =0 then  lim [[y,.(t) — ], ()] =0 (6.55)

t—oo

The control law for the yaw-heave subsystem, is obtainetiefotlowing superposition:

b v, d Ufbd
vy = v A uly = | P 4 Pf‘fb (6.56)
Ud v

col col

The choice of the controller componerj;l and the desired state vectcfrh should satisfy:
it = A2t + Bt + Dyl (6.57)

where the state vectat! is defined in Section 6.4.1. The inpuf, and the desired state/,, are

derived by using a similar recursive backstepping procedkith the one described in Section 6.4.1.
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The choice ow;‘h andxgh components emerge from the inspection of the error vegioe =, —

xgh dynamics. The error dynamics of the yaw-heave subsystemiae by:

by = — g = —bg+ (er +74)
——
T
= g+ T4+ er (6.58)
ér - 7' - rd = _/rd + N (ey + ,Ud) +Np (ep + pd) +Nw (ew + wd) +N7" (er + /rd) +,Up€d
———— —— ———— —_——
v P w r
=~ Nvg+ Nppa+ Nuwwg+Nyra+ Ney+ Npey + Nyew+ Nyper vl +v)0,
(6.59)

by =W — Wg = —Wq + Zy (€q + aq) +Zp (ep + ba) +Z, (er + 74) +Zu (€ + Wa) +Vcor
—— —— —— ——

a b r w

= g+ Zaaq+ Zubg+ Zera+ Zwwa+ Zaea+ Zyep+ Zyer+ Zuew + 005 +07°

col

(6.60)

The desired angular velocity;, and the components ofh, are chosen such that they cancel out
all the terms associated with the rest desired state vagatsid only the error terms remain to the

yaw-heave subsystem error dynamics. Thus:

ra =g (6.61)
v, =74 — Nvg — Nppa — Nuwwg — Nppy (6.62)
v = by — Zaaa — Zyba — Zyra — Zuwwy (6.63)

Based on the above choice, it is easy to verify that (6.57atisfeed. The desired state vec-
tor mfjh and the control inpui'z;fh are functions of the components of thig, y;, vectors and their
higher derivatives. Moreovet;, andw, should belong t@>? andC"!, respectively. The depen-
dence ofujfh to the components af, stems from the interconnection of the two subsystems tliroug

the matrixD,,. Using the equations given in (6.61)-(6.63), the error dyica of the yaw-heave
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subsystem become:

éyh = Ayheyh + Byhvyf}l: + Dyhell
Y;h = eyh (6.64)

YZ}? = Cyn
where:

T
Cyn = [€¢ Er e’U]

In the above equations;* denotes the vector of available measurements. Similatly e longitudinal-
lateral subsystem, the tracking problemy§f is converted to the regulation ef,, to zero. How-
ever, in the particular case, the full state vector of theéesysn (6.64) is available for feedback.

The design objective is to determine a static feedbackvﬁvvuf the form:

A (Y (6.65)
such that the closed loop stability matlzibglh = A,, — B,,K,, of the yaw-heave error subsystem
is Hurwitz. As it will be illustrated later if this conditiois satisfied, the solution of the complete
error dynamics is GAS given that? is Hurwitz as well.

Since full state feedback is available, there is a varietyptions for determining the feedback
gain K. The first choice for calculating’, ,, is via the LQR method. Similarly with the output
feedback cas€y,, is calculated such thaﬁlh is Hurwitz, and the gain selection minimizes the

following performance index:

o0 T
Ty = / (eZthheyh +(vf?) Ryhug’,’;> dt (6.66)
to

In the above equalityy,, > 0andR,, > 0 are diagonal matrices of appropriate dimensions.

Likewise toQ, andR;, the matrices),, andR,, are chosen by the designer such that a fine
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balance between the system response and the control sfeirhieved. In the case of full state
feedback, the particular optimization problem is muchexasian its output feedback counterpart.

The controller state feedback gain is given by:
K,.=R,'B.P, (6.67)
where the matrixP,,, is the solution of thelgebraic Riccati equatian
0=P,B,R,' B P, —Qu— PuA,,— AP, (6.68)

The solution of the algebraic Riccati equation, is providgdATLAB by using thecar e. m

built-in routine. A different approach is to determine teedback gaitk’,, by direct eigenvalue
placement. The advantage of this method is that the eigesyadsition provides a quantitative
perception of the system’s responSATLAB provides thel ace. mbuilt-in routine, for accu-

rate eigenvalue placement with full state feedback for MIs{Gtems.

6.4.3 Stability of the Complete System Error Dynamics

In Sections 6.4.1 and 6.4.2, we have given a detailed prats@amiof how to define the feed-
back gain matrice&,, and K, such that the the close loop matricég = Alb — B, K,C™ and
A% = A, — B,,K,, are Hurwitz. By applying the control laws,” andv/!, the complete error

system dynamics take the form:

éyh (Ayh - Bthyh) ‘ Dyh €yh

(6.69)

i O8x3 ‘ (Az];b - BllKllCZZZ) €u

The cascade connection of the closed loop error dynamit¢ewrsin Figure 6.4. The stability of

the complete error dynamics system given in (6.69), is §ipeldby the following Theorem:
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Yaw-Heave subsystem

: _ l
én = A% e, + D,ey

yh -yh

e
Longitudinal-Lateral subsystem "

s Acl
€n = A” (]

Figure 6.4: Cascade connection of the closed loop errormdigsasubsystems.

Theorem 6.1. Given that the feedback gaids, and K, are selected such that the matrices
Ad = A" - ByK,Cjrand A%, = A, — B,,K,, are Hurwitz, then the solution(t) =

[e,n(t) eu(t)] of the complete error dynamics system(@#69)is GAS.

Proof. The proof of the Theorem begins with a standard result frowali algebra. 14 € R™*",

B € R™*™ are square matrices, adds R"*™, then the following property holds:

A C
det = det (A) - det (B)
Oan B
wheredet(-) denotes the determinant of a matrix. Denote\dhe eigenvalues of the composite
error dynamics system of (6.69). By definition, the eigemealof (6.69) satisfy the following
equalities:

A% — Ny D,,

det = det (A;lh - )\I3><3> - det (A;l - AISXS) =0

0 A — Ngys

Therefore the eigenvalues of the composite error systesmtharunion of the eigenvalues Aglh
andA¢. Since both of those matrices are Hurwitz, then all the eigleles of (6.69) have strictly
negative real parts. Therefore the complete error dynasystem of (6.69) is GAS. O
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6.5 Position and Heading Tracking

The ultimate goal of the controller design is for the heligopo track a predefined position
trajectory of the inertial frame expressed by the referesgegorp;, = [p; . pr, pﬁ’Z]T. The
helicopter position expressed in the body-fixed frame, i®ted by the coordinate vectpf =
[pf Dy pf]T. The position error expressed in the body-fixed frame isrghige,; = p” — p;.
The position error dynamics are derived by using the pragsedf the rotation matrix?, described
in Chapter 3. The rotation matrix is used for mapping coattirvectors from the body-fixed
frame to the inertial frame. For the position error exprdssahe body-fixed frame the following
equalities hold:

ey =p” —pl = R"p' — Rp] (6.70)

Using the analysis of Chapter 3, the position error dynamiesgiven by:

ef =RT (p" —pl) + BT (p" — p})

= R” (v' —v}) + (Ro®)T (p' — pl)

BT
=0" —vg + (%) (p” —pr)

=e, —w’e;

= eF 4 eBP (6.71)

For deriving the position error dynamics we have used tHewiahg:

= —&Bw” (6.72)

The position error dynamics are not linear since they ineltie nonlinear termjw®. The
latter term expresses the contribution of the angular vgloa the position error dynamics.
The choice of a linear model for the representation of thiebpler dynamics is limited to

a certain range of a particular operating condition. In tiaise, the operating condition of inter-

116

www.manharaa.com




est is the hover flight mode. Since the linear model of (6.2¢$¢ricted to a certain range of the
hover mode, the tracking problem of arbitrary position aalbeity trajectories becomes dubi-
ous. However, experimental results of real life appliaaiindicate that the accuracy of linear
dynamic models is satisfactory enough for a relative widwgesof the flight envelope around

the reference operating condition. Therefore, it is asslitiat the adopted linear model of (6.2)
provides a quasi-global description of the helicopter dyita. Linearization is also applied to the
nonlinear position error dynamics, assuming #fats the perturbed value of the position error
from the reference steady state ve@tﬁg = [000]". Similarly, w” is considered as the angular
velocity’s perturbed value from the trim vectof = [0 0 0]7. In this case, the ter@fw” can be
disregarded since it is considered as a product of two rtuvalues. This approximation adds
up to all simplification assumptions that take place in otdesbtain the linear dynamic model of

the helicopter given in (6.2). Therefore, the approximatesiition error dynamics are given by:
el =el (6.73)

The composite error system is additionally enhanced byrtegjial of the position and yaw
error dynamics. The presence of integral terms in the cblainois very beneficial in terms of
robustness performance. The feedback integral compoatatsiate the steady state tracking
error caused by potential parametric and model uncertadeyote byy; = [n; n; n?]" and

1y the integral of the position and yaw error. Thus:

775 = 65 and 7;}1/, = €y (674)
The structure of the control laws for the position trackimglgpem will be identical to the
velocity tracking case. The composite error dynamics diessparated into two subsystems cor-

responding to the lateral-longitudinal and yaw-heave omotHaving said that, the longitudinal-

*More details about linearization may be found in Section 5.8
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lateral dynamics are given by:

én = Auey + Bllvz{b (6-75)

m m
yll = Cu €u

where:
en=[n? N, €5 € €u €y €o €y €q € €q e
B B B B
= [nm N, €r €, €u €y € €4 €q ep]
and:
O4x2 ‘ Iyxs  Osxe O4x2
A” = fb = _ (676)
O8><2 O8><2 Au Bll

The yaw-heave error dynamics are given by:

éyh = Ayhsyh + Byhvﬁj —+ Dth” (6.77)
ymh = Eyn
where:
_ I.B B T
Egn =12 My €5 ey ew e
and:
03x2 ‘ I3x3 O3x1 032 03x3 | O3x8
Ayh - yh — ~ D (678)
03x2 ‘ O3x1 Ay B, O3x4 | Dyn

The interconnection of the new complete error dynamicsyaibms is illustrated in Figure 6.5.

Similarly to the velocity tracking case, the control desigineduced to the calculation of two
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Yaw-Heave subsystem

. b
Eyn = Ayhgyh + Byhvyfh + Dthll

€
Longitudinal-Lateral subsystem "

. fb
eu = Ayey + Buvi,

Figure 6.5: Cascade connection of the error dynamics stéragsrelated with the position
tracking problem.

feedback gain matrices;, and/C,,, such that by applying the following feedback control laws:

Ulj;b =K (6.79)
vl = —K .o (6.80)
the closed loop matriced? = A, — B,K,C;" andA?, = A,, —s5,,x,, are Hurwitz. The

feedback gains can be calculated by performing the metbgas described in Sections 6.4.1 and
6.4.2. For example, following the LQR method the gains alecsed such that they minimize the

following quadratic performance indexes:

o0 T
Ju = / (55911511 + (vz];b) Rllvl];b) dt (6.81)
to
o T
T = / (gghgyheyh + (U;‘,’;) Ryhug‘,’;) dt (6.82)
to

However, in order to follow the LQR or eigenvalue placemeetimdologies, the pairs4,;, 5,)
and(A,,, B,,) must be controllable. The necessary condition for cortbiity of the pairs(.A,;, B,;)

and(A,,, B,,) is established by the following Theorem:

Theorem 6.2.Given that Assumptions 6.1, 6.2 and 6.3 hold, then the gairs 3,,) and (A, B,,)

are controllable.
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Proof. Based on Assumptions 6.1 and 6.2, the [(&h;ib, Byh> is controllable. Let T'(s) =
[slg — A{;b|B” wheres € R. From the Popov-Belevitch-Hautus (PBH) test, for everg R
we haverank (T'(s)) = 8. We need to show thatunk (7 (s)) = 12 for everys € R, where
T (s) = [shia — Au|Bu].

e Fors = 0 one has:

sly  —1Is | Oaxo  Oaxe

O4x2
rank (7(s)) = rank Ooxo  sly | —Iy 0oy

O2><2 O2><2 _Azj;b ‘ _Bll

Sinces # 0, the first four rows are linearly independent. Therefore:

rank (7 (s)) = 4+ rank <[Al];b|B”D =4+8=12

e Fors = 0 one has:

O2x2  —12 | Oax2  Oa2xe
O4x2
rank (7(0)) = O2x2 O2x2 | =12 Oaxe

02><2 02><2 _Aﬁb ‘ _Bu

The first two rows are linearly independent. Therefore:

—1I 02x6‘ 0252

Al | B,

rank (7(0)) =2+

The matrix of the right hand side of the above equation, issgand lower triangular with
nonzero elements in its main diagonal (this fact is guastht®y Assumption 6.3). Hence,

the rank of this matrix is 10 ancink (7(0)) = 12.

We have proved that for evesy € R, we haverank (7 (s)) = 12. Therefore given that the

pair (A{;b, B,,) is controllable, then the paitA,;, B,) is controllable as well. The proof for the
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controllability of (A,,, B,,,) based on the controllability of the pdia,,, B,,) is derived similarly

to the above analysis. O

By applying the control laws}” = —/C, Y7 andv!) = —K,, Y, the complete error system

dynamics take the form:

¢ = Ade (6.83)
where:
Eyh A, — B, Ky ‘ D,
S TR I R T - (6.84)
N Oos | (u— BaKuCl?)

The stability of the complete error dynamics system of (Bi8&stablished by the following The-

orem:

Theorem 6.3. Given that the feedback gaig, and KC,,, are selected such that the matrices

yh

Ad = A, —BK,C' and A%, = A, —B,,K,, are Hurwitz, then the solution(t) = [e,,(t) &,(t)]

Y

of the complete error dynamics systen{6r83), is GAS.

Proof. The proof is derived similarly to Theorem 6.1. The eigengalof (6.83) have strictly neg-

ative real parts based on the determinant property of squateces in block triangular form. O

6.6 PID Control

In many practical control applications the MIMO dynamic rebdf the helicopter is not avail-
able. In this Section we present a fundamental controllerpmsed by four SISO Proportional
Integral Derivative (PID) feedback loops. This controlegte is a very common start up design
point in real life applications, since it does not require kmowledge of the helicopter model and
the controller gains can be empirically tuned.

The design of the cyclic feedback loops is based on the sifaptdéhat the longitudinal and
lateral velocity of the helicopter is produced from the lpiemd roll tilt of the fuselage. Therefore,
the helicopter velocity is considered proportional to te&dopter attitude [70]. The structure of

the feedback law is composed by two main loops: ifimer loopand theouter loop The inner
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loop regulates the helicopter attitude to the desired arfgle and¢,.s. The feedback signal of
the inner loop is proportional to the attitude error. Thesolhop generates the desired attitude
angles. The desired pitch and roll angles are proportiantie position and velocity error in the

longitudinal and lateral directions, respectively. Thelimycommands are given by:

Uon = —Kp(0 — Oges) = —Ko(0 — Ky any — Kyey — Kyey,) (6.85)

and:

Ugat = —Kg(¢ 4 Gaes) = —Ky(¢ + Kyyny, + Kye, + Kypey) (6.86)

In order for the above feedback law to perform well, the @diit error should be regulated to zero
faster than the translational error. To do so, the contwldains should be chosen appropriately
such that a distinct time scaling is achieved between tite@dtdynamics and the translational
dynamics. The pedal and collective feedback loops are mretdhan the cyclic loops. Each

of them is composed solely from the yaw and heave error anddabeesponding velocity error.

Therefore the pedal and the collective input are given by:

Uped = _Knﬂl)mﬂ — K¢e¢ — Krer (687)

and:

Uecol = _Kn,znf - Kyef — Kye, (688)

The PID control design does not take into consideration tbesccoupling effect that usually ex-
ists in the helicopter dynamics. Therefore, the four cldeegs are completely independent with
each other. The gains of the control feedback loop are tupaihfiple trial and error. The gain

tunning procedure can be significantly improved by the keolge of a simple non-parametric
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model of the helicopter. The non-parametric model can beeted with the methodologies de-

scribed in Chapter 5.

6.7 Experimental Results

The performance of the proposed linear tracking contraliet the PID design is evaluated
using theRaptor 90 SERC helicopter in theX-Planesimulator. Details about the Raptor model
andX-Plane can be found in Section 5.10.1. The stability and controlvdéves of the Raptor’s
linear model are given in Table 5.4. Both controller perfante was tested by the execution of a
velocity tracking maneuver. The desired maneuver is a zi@gdal velocity profile in the lateral
and longitudinal directions of the inertial space. Througihthe maneuver the desired heading
remains constant with the valgg, = 0. The linear tracking controller’s gains of (6.79)-(6.80)
are shown in Table 6.1. The PID gains are given in Table 6.2.chmtroller responses versus the
desired trajectory are illustrated in Figure 6.6. The pitoll and yaw orientation angles for the
two controllers are depicted in Figure 6.7. The positionhef helicopter in the inertial coordinates
is given in Figures 6.8 and 6.9. Finally the control inputstfe two designs are given in Figures
6.10 and 6.11.

Based on the results, the performance of both controlldgdssvas satisfactory. Although
the reference trajectory requires that the helicopterwesca cruising maneuver (longitudinal
velocity up to17 m/sec and lateral velocity up t8 m/sec) a single linear controller based only
on the hover linear model, was adequate. To this extentdtmification of multiple models for
different operating conditions was redundant. It was etquethat the PID performance would
be inferior to the linear design, however the flight resuitdigate that both the designs provided
equally successful results. The success of the PID coatrigliattributed to the attenuated cross
coupling effect amongst the Raptor dynamics. This fact jpstted by the off-axis responses of
the helicopter illustrated in Figure 5.3. The magnitudehefq/w;,; andp/u;,, responses lie in the
zone of—20 to —40 dB. This is an indicator of negligible cross coupling betweesa tielicopter

dynamics.
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6.8 Remarks

This Chapter has presented a position (or velocity) andihgadcdacking controller for small
scale helicopters. The analysis is restricted to this déasstorcraft because the adopted generic
linear model, to which the controller is based on, may beeqadte for full scale helicopters.
Models for full scale helicopters are in principle of higleeder by including additional dynamics
such as coning, engine dynamics and other aerodynamid<lfilee the inflow velocity’s dynam-
ics. The linear design is based on the linearized helicapteamics around hover. The design can
be expanded such that the overall control law can be an oitggu of multiple controllers where
each of them corresponds to a linear model of a differentatimgr condition of the helicopter.

It is important however that all of the linearized modelsé#ve same structure and order with
the base hover model and only their parameters may vary.diti@dl it is important that for all
the linear models, it is physically meaningful to be appneied by a system of strict-feedback
form such that the principle of differential flatness hol@ike output feedback controlle«r)éb and
vﬁ’ are not restricted only to the proposed designs of this @ndgpit they could be chosen from
a wide variety of linear controller designs that exist in literature. To this extent, the popular
method ofH ., may be also applied. The suggested output feedback coatvsldf this Chapter
are only indicators for a straightforward design.

To eliminate the necessity of multiple linear models a gngdnlinear model should be used
leading to a nonlinear controller design. This is the godahefnext Chapter where a nonlinear
backstepping controller is proposed based on the nonlimelamopter dynamics. The helicopter
dynamics are based on the complete nonlinear equationstam@nhanced by a simplified

model of the main and tail rotor forces and moments generatio
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Table 6.1: Linear tracking controller feedback gains.

—1.9187 0.4710 —4.3711 1.0374 —3.1353 0.6882 9.8054 1.9041 0.5662  0.2395
U=
—0.1242 0.6031 —0.2734 1.3663 —0.1847 0.9682 0.5038 2.9687 0.0632 —0.5391

0 0 42 0 109451 O
Kyn=
0 0 0 60 0 1

Table 6.2: PID controller gains.

Ky 0.7566| K,  0.3252
K,. 0 |K, 02493
0.3256| K,, O
K, 0.1628| Ky 3
K, 04569| K,  0.35

&

K, 0.6060| K, 1.6018
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g 10} .
g .
= 0 ‘ : :
_10 L L L L L L L
0 10 20 30 40 50 60 70
4 T T T T
g 2 » )
é <4
= 0 ‘ : :
_2 L L L L L L L
0 10 20 30 40 50 60 70
5
o
(6]
« N
E O3
|l
_50 10 20 30 40 50 60 70

time (sec)

Figure 6.6: Reference trajectory (solid green line), dgboaition trajectory of the linear (green
dashed line) and PID (dashed-dotted red line) designsessed in inertial coordinates with
respect to time.
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Figure 6.8: Reference position trajectory (solid line) #melactual trajectory of the linear (dashed

line) design with respect to the inertia axis.
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Figure 6.9: Reference position trajectory (solid line) #mgl actual trajectory of the PID (dashed
line) design, with respect to the inertia axis.
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Figure 6.10: Control inputs of the linear design.

127

www.manharaa.com




- 0
S
S -0.2f .
_04 | I L L L I I =
0 10 20 30 40 50 60 70
. 0.2r i
©
= 0
_02 L L L L L L [ 1
0 10 20 30 40 50 60 70
3 0 —,J\_,—\‘ -
5% -0.5 A
_1 L L L L L L L -
0 10 20 30 40 50 60 70
1 T T T T T T T 5
:8 ok L_F,W
-1 L I L L L 1 L =
0 10 20 30 40 50 60 70
time (sec)

Figure 6.11: Control inputs of the PID design.
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Chapter 7: Nonlinear Tracking Controller Design for Unmanned Helicopters

The previous Chapter presented a tracking controller optsition and heading of a heli-
copter based on the linearized helicopter dynamics. Thptadgarametric linear model, to which
the flight controller is based on, represented the quasigt&ate behavior of the helicopter dy-
namics at hover.

Real life case studies indicate that the validity of lineardels is restricted only to flight op-
eration around the trim point of reference. A wider deswipbf the flight envelope requires the
identification of multiple linear models where each of themrresponds to a different operating
condition of the helicopter. Therefore, multiple conteol should be designed where each of them
is based on the linear model of a particular operating camdiiThe output of overall control law
is produced by a scheduling process of these multiple déersaepending on the helicopter’s
operating condition.

However, as indicated in Chapter 5 the experimental praeeidu the extraction of linear
models parameters, for operating conditions other thaeh@yva tedious and in many cases unre-
liable process. The ideal solution to this problem wouldh®sedesign of a single controller based
on a model that provides a global description of the helieogynamics. The goal of this Chapter
is the design of a position and heading control law based @ndnlinear helicopter dynamics.
The resulting control law, from a theoretical view pointyaid for the complete flight envelope

and is applicable to both full scale and small scale helexgpt
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7.1 Introduction

In general, most controller designs are based on the lireghhelicopter dynamics using the
widely adopted concept of stability derivatives [25, 28:-58, 89]. However, in recent years there
is considerable research related to helicopter flight cbbised on nonlinear dynamic representa-
tions [24, 30, 47, 88, 91].

This Chapter presents a nonlinear tracking controllergiefr helicopters. The main objec-
tive is for the helicopter to track a predefined, possiblyragsive, position and yaw reference
trajectories with certain bounds that reflect the helicopgghysical limitations. The helicopter
model is represented by the rigid body equations of motidraroed by a simplified model of
force and torque generation. The helicopter nonlinear iisdmsed on the work reported in [47].

The controller is based on the backstepping design primégslsystems in feedback form. The
intermediate backstepping control signals (a.k.a. pseodtrols) for each level of the feedback
system are appropriately chosen to stabilize the overidldper dynamics. The resulting sys-
tem error dynamics can be separated in two interconnectesystems representing the error in
translational and attitude dynamics, respectively. Tlsérdition of the two subsystems indicate
the time scaling separation that exists in actual heliasptdnere the position dynamics are signifi-
cantly slower than the attitude dynamics.

The incorporation of nested saturation feedback functioiise backstepping design preserves
the helicopter's motion and power physical constraintse ifitermediate control signals related to
the attitude dynamics exploit the structural propertiethefrotation matrix and are enhanced with
terms that guarantee that the helicopter will not overtuhilertracking the desired position trajec-
tory. The attitude dynamics are rendered exponentiallyistahile the translational dynamics are
globally asymptotically stable. Numerical simulatiorisstrate the applicability of the proposed

design.
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7.2 Helicopter Nonlinear Model

Before we proceed with the helicopter nonlinear model weduce some mathematical nota-
tion that is required for the following analysis. The abbatonsC, andS, with ¢t € R represent
the trigonometric functionsos(¢) andsin(t), respectively. The operand$:)||, |(-)| denote the
Euclidean norm and thig)||, norm of a vector, respectively.

The helicopter model considered in this Section is compbgeatie nonlinear equations of
motion accompanied by a simplified model of the forces and emdathat are produced by the
main and tail rotor. These aerodynamic forces and momeatsamplex nonlinear functions of
the motion characteristics and controls which are doméhbtehigh uncertainty. Detailed models
of the helicopter nonlinear dynamics can be found in [7, 4, Bowever, such models are of
high order and impractical for the development of flight coltérs. In this Section, the derivation
of the external forces and moments that act on the helicapéebased on the simplified model of

the generated main rotor thrust that is covered Chapter 4.

7.2.1 Rigid Body Dynamics

The helicopter rigid body nonlinear equations of motionéhbeen already derived in Chapter
3 and are briefly repeated here for clarification purposesple- [p; p, p!]T denote the position
vector of the CG of the helicopter with respect to the inéd@rdinates, and’ = [v; v, vI]T
denote the linear velocity vector in inertial coordinatébe angular velocity with respect to the
body frame isv” = [p ¢ r]T. Based on Chapter 3, the complete rigid body dynamic equatd

the helicopter in the configuration spa§&(3) = R? x SO(3) are:

pr=' (7.1)
1
o' = —Rf® (7.2)
m
R = R (7.3)
To® = —w? x (Zw®)+ 77 (7.4)
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Figure 7.1: The helicopter's body-fixed frame, the Tip-PRtane angles and the thrust vectors of
the main and tail rotor.
The rotation matrixk is parametrized with respect to the three Euler angles ¢dliditch

(#) and yaw {)) and maps vectors from the body fixed fratfg to the inertia frameF,. The
controller design of this Chapter makes extensive use afdtagion matrix so its components are
repeated here:

CyCy —SypCy+ CySpSs  SeSy + CySeCly,

R=18,Cy CuCy+SsS9Sy —CypSey~+ SypSeCl
—Sp CpSy CoCy

The orientation vector is given = [¢ 6 ¥]” and the associated orientation dynamics are
governed by:

0 = U(0)w? (7.5)

The components of (©) matrix are given in (3.25). The helicopter’s rigid body dgmias given
in (7.1)-(7.4) are completed by defining the external bodgdiframe forcefZ and torquer?®.

The vectorF® = [f? 77]T is called the external wrench that acts on the helicoptel [75

7.2.2 External Wrench Model

This Chapter follows the modeling approach of [47, 56, 7, WRich provides a simplified

external wrench model adequate for controller design mepoMost of the consepts associated
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aL L Ir .
f=Ty+Tr+WF? v = %RfB
Tap —> L
T% —| Thrust generation |Inm,Tr R
a —> TMaTT
b
?ZF,;,—I—HMXTM TB R = R&®
+ hy x Ty Tw®? = —w” x (Zw®) + 1"

Figure 7.2: This block diagram illustrates the connectibthe generated thrusts of the main and
tail rotor with the helicopter dynamics. The vecidi” represents the weight force expressed in
the body fixed frame.

with the derivation of the simplified external wrench modalé been already covered in Chapter
4. The main assumption is that the thrust vector producetidynain rotor is considered perpen-
dicular to the TPP.

There are four control inputs associated with helicoptiatipg. The control input vector in
this Chapter is defined as = [a b Ty Tr)*. The component$),; andT’r are the magnitudes
of the generated thrusts by the main and tail rotor, respdgtiThe magnitude of the main and
tail rotor thrust is produced by a uniform change in the paolgles of the main and tail rotor
blades. The flapping anglesb represent the tilt of the TPP at the longitudinal and lataxas,
respectively. The vectors of the body-fixed frame, the flaggingles and the thrust vectors are
depicted in Figure 7.1.

From Section 4.8 the components of the main rotor thrusovddt;, expressed in the body-

fixed frame, are given by:

Xm —5,Cy —a
Ty = vyl =1 CSy |Tu=| b|Tu (7.6)
Zu —C,C ~1

As indicated from Section 4.8, the above equation is singplily assuming small angle approx-

imation (os(-) ~ 1andsin(-) ~ (-)) for the flapping angles. The small angle assumption is
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adopted by [40, 47, 70]. For the body-fixed components ofdhedtor thrust vector, one has:

0 0
T = |vy| = |-1| Tr (7.7)
0 0

Xu 0

B __ T

fP=\Yu+Yr| +R |0 (7.8)
YAV mg

A common simplification practice followed in [37, 47, 66] sneglect the effect of the lateral
and longitudinal forces produced by the TPP tilt and theceé the tail rotor thrust. Those para-
sitic forces have a minimal effect on the translational dyita compared to th&,; component.

In this case, the only two forces applied to the helicoptertae main rotor’s thrust vector at the

direction ofk, of the body frame and the weight force. Therefore, (7.8) ez

0 0
=0 |+R"| o (7.9)
=T mg

The generated torques are the result of the above forcehiamdtors moments. Denoie;, =
[T Y 2] andh? = [z y¢ z]T as the position vectors of the main and tail rotor shaftpees

tively (expressed in the body-fixed coordinate frame). #igt= hy; x Ths and7p = hy x Tr be

The override of thef® components in thé; andj; directions of the body-fixed frame achieves the decoupling o
the helicopter external force and moment model. The worknted in [47] indicates that if the complete description of
the force vector given in (7.8) is used, then the state spatanics of the nonlinear helicopter model can not be input-
output linearizable and the zero-dynamics of the systeirb@ilinstable. If the system dynamics are not input-output
linearizable most of the standard control methodologidkbeiinapplicable. If the proposed approximation takesgla
the helicopter nonlinear model becomes full state linedatiz by considering the position and the yaw as outputs. To
the authors knowledge there is not any controller desighériterature that is based on the exact model and in all case
studies this approximation is performed. The use of the@pprated model also took place in Chapter 6 indicating that
for the helicopter control problem only practical stailian be achieved based on the approximated model.
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the torques generated tfy(/[ and7, respectively. The complete torque vector will be:

YmZM — 2mY¥M — 2 YT
=T+ 2m XM — TmZMm (7.10)

TmYM — YmXn + 2 Y7

with 75 = [Rar My Na]”. The7, is produced by the main rotor moment vecfgrdue to the
hub stiffness and the main rotor anti-torque denotedhy. The components af? = [Ry; My Ny

are:

Ry = Kgb — QuarSuCh My = Kga + QnSpCla

Ny = =QuCaCh Qu = CM |Ty|"* + DV

The positive constants™ and DM are associated with the generation of the reaction to@jye
A detailed description of,, can be found in [30, 47]. Figure 7.2 depicts the associatfadheo
generated thrusts with the helicopter’s rigid body dynam&ubstituting (7.6), (7.7) to (7.10) a

more compact form of the torque can be given as:

78 = A(Tw)ve + B(Twr) (7.11)

where:

ve=(a b Tr)" (7.12)

with A(Tys) € R3*3 being an invertible matrix for boundefl,; and B(Ty,) € R3*L.
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Attitude Dynamics Translational Dynamics

7777777777777777777777777777777777777777777777777777777777777777777777777

Figure 7.3: This block diagram illustrates the intercorioecof the approximated helicopter’s
dynamics.

7.2.3 Complete Rigid Body Dynamics

Using the force simplification assumption given in (7.9) #melapplied torque given by (7.11),

the translational and angular velocity helicopter dynanaie expressed as:

1
v = ——ResTy + ges (7.13)
TP = —w” x (Zw®) + A(Tw )ve + B(Twr) (7.14)

wherees = [0 0 1]7. The interconnection of the helicopter dynamics is showRigure 7.3. The
helicopter dynamics can be further separated in two interected subsystems representing the

attitude and the translational dynamics, respectively.

7.3 Translational Error Dynamics

Consider a helicopter described by the dynamic equatiad3, (7.3) and (7.13), (7.14). The
objective is to design a controller regulating positigrand the yaw angle to the reference val-
uesp; = [p;, pr, p,{’Z]T andv,., respectively. The proposed controller design requirasttie
components op’. and their higher time derivatives are bounded. This is aeebegl restriction,
which reflects the helicopter’s physical constraints. lremnore, the controller design assumes

availability of all helicopter’s state variables of thensdational and attitude dynamics. The con-
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troller design is based on the backstepping procedure &iesys in feedback form. A description
of the backstepping methodology can be found in Appendix A.

Let R = [p1 p2 p3] Wherep; with i = 1,2, 3 are the column vectors of the rotation matrix.
Denotep:.; the element of thg,;, row and:,;, column of the rotation matrix. Let, denote the
orientation error between the actual direction of the thvestor ps, minus a desired direction
denoted byy = [pa1 pa2 pd,3]T. Following standard procedure of the backstepping design,

translational error dynamics of the helicopter can be amits:

I

—pr =D, +ugtey (7.15)

1 1
év = i)l — i)cll = geés — UCIl — EpdT]\/j — EePTJ‘/I (716)

€p =D

The elements of the unitary vectoes express the inertia coordinates of the body’s frame vector
k. The term—p3Ths represents the helicopter’s thrust force. Obviouglydictates the direction
of the thrust vector whil@’; its magnitude. As illustrated in Figure 7.3, the thrust magte 7,

is a direct control command while the direction vegtgiis indirectly manipulated by the attitude
dynamics. The translational error dynamics subsystemowstin Figure 7.4.

The main design idea of this step is to choose the desireditiettynamicsv), the desired
direction and magnitude of the thrust vectpy &ndT},, respectively) in such a way so that the
translational error dynamics will be globally asymptoligatable (GAS) by disregarding initially
the effect ofe,. The resulting translational error dynamics subsystembeaviewed as GAS nom-
inal system perturbed by the orientation eregr As it will be illustrated, the proposed choice of
v}, pa, Thr followed by the exponential stability of the orientatiomagre,,, will guarantee that the
complete translational error dynamics will be uniformlplghlly asymptotically stable (UGAS)
for any initial condition of the position and translationadlocity.

The following desired values will be chosen:

v = pr (7.17)
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.

e e
P . . v . .
p3 éy = ges — 0} — LpaTa — e Ty ép = —Pp + Vgt €
I
Pd vy

Figure 7.4: This block diagram illustrates the translaicgrror dynamics subsystem.

i+ ges + T 0+ T1 (Wlew + )

‘—j?'{n + ges + Yo <ev + 31 (W(ew + ep))> H

Pd = ‘ (7.18)

Ty =m H—pf, + ges + 2o (ev + 31 (W (ew + ep))) H (7.19)

whereW = diag(wy,wq,ws) with w; > 0 fori =1,2,3 and:

S(ep,ey) = 2o <€v + Z1(VV(% + ep)))

02,1 (ev,x + o011 (wi(evs + ep’x)))
= | 022 (ev,y + o012 (wz (Evy + epyy))) (7.20)

023 <ev,z + 013 (w3 (ev,z + ep,z)))
The functiono denotes a saturation function, which is defined as follows:

Definition 7.1. The functionry : R — R is a continuous, twice differentiable, nondecreasing

function for which given two positive numbdrs M with I < M the following properties hold:
P.1. o(s) = swhen|s| < L;
P.2. |o(s)] < M for everys € R;
P.3. so(s) > 0 for everys # 0;

P.4. |o(s)| < |s| for everys € R;
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P.5. o(s) is globally Lipschitz ins, with Lipschitz constarfiL. Hence:

Vs1,82 €R |o(s1) —o(s2)] <L |sy — s2

The above definition of the linear saturation function isiknto the definition given in [102].
Two additional properties are added. The twice differdniliix and the globally Lipschitz prop-
erty (P.5) that are necessary for the backstepping design.

The choice of the desired thrust vectep, 1, given in (7.18), (7.19) is twofold. Firstly, by
(7.18) it is obvious thap, is chosen to be a unitary vector. Secondly, due to the usesafehted
saturation feedback, given that the desired accelergfiambounded by (7.19) the thrust magni-
tudeT; will be bounded as well. This fact is of particular importargince due to the the phys-
ical constraints of the helicopter actuation, stabilitpld be achieved with limited control re-
sources.

The helicopter during the flight operation is required nabterturn while tracking the refer-
ence maneuver. More specifically it is required thdt)| < =/2 and|0(t)| < = /2 for every
t > to. Apart from the physical helicopter flight limitations, $héondition is necessary to avoid
singularities in the rotation matrix representation byHEuer angles. Similar constraints apply by
the use of quaternions for the attitude representation7§,Sinceps 3 = CyC, the helicopter will
not overturn if the inequalitys 3(¢) > 0 is preserved for every > t,. When the helicopter is
tracking its desired orientation, dictated by the dirawdilovectorp,, the same limitation should
apply. In other words|p4(t)| < w/2and|0,4(t)| < =/2for everyt > ty. From (7.18) an
additional constraint is imposed on the choice of the stituraectorS(e,, e,,) and the desired
position trajectory. This constraint is sufficient to gudee thatp,3 = Cy,Cy, > 0 for every

t > to.

Property 7.1. If for everyt > t, the saturation level/, 3 of the functions; 3 and the predefined

value ofjy; , satisfy the inequality:
_ ..I
g = Mas > max . .(t)
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Translational Error Dynamics

ep ep e e’U

Attitude Dynamics S .
&y = —S(ep,ey) — epU(t7 ep, €v)

Pd(pl.ep,ev)

Figure 7.5: Resulting system dynamics after the choice;0b; and 7.

thenp, 3(t) > 0 and consequentlyp,(t)|, |64(t)| < w/2 for everyt > t.

The above property can be easily verified by the followingeseof inequalities:

pa3(t) >0
= — Bt + g+ 03 <ev,z + o3 (wsley.s + ep,z))) )

= g— Mz > Ig@gﬁf«,z(t)

Substitution of the desired values given in (7.17)-(7.18) nesult in the following representation

of the translational error dynamics:

ep = €y (7.21)
v = —S(ep, ev) — (p3(0) — pa(t)) U(t, €p, 1) (7.22)
ep
where:
U(t,ep, ey) = H—p,{ + gez + Yo <ev + 31 (W(ew + ep))) H (7.23)

RegardingU(-) the following property will hold:

Property 7.2. Given thatp, 3(t) > 0 for everyt > t,, then the following inequalities will hold:

Umin S U(t, epaev) S Umaac
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with:

Umin =g — M2,3 - maxpf"z(t) >0
t>tg ’

Umaw = %%3( ‘|p7{(t)|| +9+ \/§(M2,1 + M2,2 + M2,3)

The resulting system dynamics, up to this point, can be seEigure 7.5. The translational
error dynamics subsystem can be considered as a GAS nom#talrsof a single integrator con-
trolled by a nested saturation feedback law. Chains of rategs controlled by linear saturation
functions have been extensively investigated in [102]. idminal system is perturbed by a bounded
term of the orientation errar,. The stability analysis of the resulting translationabedynamics
will be investigated in detail in Section 7.6, after we elibsome useful stability results associ-
ated with the attitude error dynamics subsystem.

Before we proceed with the analysis of the attitude dynasutsystem, the following obser-
vation is mentioned. Singe; andp, are unitary vectors there is an additional constraint esque
by the equalityp3 3 = /1 — p§71 - p§72 given thatps 3 > 0. Due to this constraint it is shown that
only exponential decay of the vectey = o — o4 With 0 = [p31 ps2]” andoas = [pa1 pa2)? is
required. The vectorg andyy lie in thex — y plane of the inertia frame. Given that the controller
design guarantees that the helicopter will not overtugry (t) > 0 for everyt > t() the exponen-
tial convergence of3 3 t0 pg 3 follows. A representation of the orthonormal vectpgspq can be

seen in Figure 7.6.

Definition 7.2. Denote the open and connected sets:
1.P=(0 1]
2. The two dimensional s@ = {v € R? : |[v|| < 1}
3. The two dimensional sét= (-2 2) x (-2 2)

A consequence of the angle boundg, |¢| < =/2 and|f,|, |p4| < 7/2 are the statements of

the following Proposition:
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Top view Side view
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® i
2
[pssll = /1~ o]l
P3,3
2
€pss [pasll = /1~ lloall

Pa,s ‘\J

i

Figure 7.6: This figure illustrates the helicopter’s vatiorientation vectorgs, ps with respect to
inertia frame forps 3, pg.3 > 0.

Proposition 7.1. Whenps 3, pq 3 € P then:

1. |¢| ) |¢d| ) |0| ) |6d| < 7T/2
2. 0,04 €Q
3. e, €€

This Section has introduced the applied pseudo controteded with the translational error
dynamics. Additional comments and conditions were preserglated to the orientation restric-
tions of the helicopter during the flight maneuver, that aeassary for the analysis of the attitude
dynamics. The detailed stability analysis of the transtel error dynamics subsystem is given
in Section 7.6, after some useful results associated witlstébility of the attitude dynamics are

established in Sections 7.4 and 7.5.

7.4 Attitude Error Dynamics

This Section presents the attitude error dynamics submystarthermore, the proposed pseudo

controls and the input vectat. for the stabilization of the attitude error are provided.aftdrom
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the stabilization part, additional goal for the control ls#o keep|6(¢)|, |¢(t)| < /2 for every

t > to for any initial condition of the attitude dynamics for white helicopter is not overturned.

7.4.1 Yaw Error Dynamics

The yaw dynamics are obtained by the equation:
) =3 (0)w? (7.24)

whereV; (©) is the third row of the matriXv (©) defined in (3.25). Let,, = 1) — v, be the error

of the yaw angle, then the error dynamics will be:

€y = —l/}r + U3(0) w?

. S, C
= -, + F‘zq + UZT (7.25)

Using the yaw angular velocity as pseudo control, the error dynamics for the yaw angle can be
written as:
.S C
p = U+ 22q+4 “Lrg+ a(4,0)e, (7.26)
Cy Cy

wheree,, = w” —w?, with e, = ey » €wy w2}, WS = [Pa qa rq)T anda (¢,0) = {0 0 g—j] The
value ofr, will be chosen in such a way to cancel out the nonlinear temdsséabilize the yaw

error dynamics. The choice is:
.S
= S0 1 — Fﬁq ey (7.27)

where),; is a positive gain. The yaw dynamics become:

€y = —Aypey + (0,0) ey (7.28)
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7.4.2 Orientation Error Dynamics

As mentioned earlier due to the constraint of orthonormpalftthe vectorps the orientation
analysis can be restricted to the vectoe £. As it will be shown, exponential stabilization of
the error dynamics, = o — o4 Will guarantee the exponential stabilizationegf The reduced

orientation error dynamics are:

. . Pd Cu,x
ép=—0a+ Z(O) + Z(0) (7.29)
qd €uw,y
where:
—pP2, , . _ 1 2 —P1,
2(0) = P21 P11 with2 7 1(@) _ b P12 —P1,1 (7.30)
—pP22 P12 P33 P22 —pP21
The choice of the angular velocity pseudo controls is:
Pd k
=zYo) (@d —ANie, — —eg) (7.31)
Q4 P33

whereA; = diag(A1,1,A1,2) with Ay ;, & > 0 for i = 1,2. The reduced orientation error dynamics

take the form:

k Cuw,
g =—Ney— —e,+2(0©) | °
P3,3 Coy
k
= —Aleg ——e€p+ Z()(@)ew (7.32)

3,3

with Zp(©) = [Z(©) 0,,,]. It can be easily verified thatZ (0)|| = || Zo(©)|| = 1.

’Note thatps s = p1,1p2,2 — p1,2p2,1-
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7.4.3 Angular Velocity Error Dynamics

The angular velocity error dynamies based on (7.14) have the following form:

Té, =T(w® — wF)
= —Id.)g — @ BIwB + A(TM)’UC + B(TM)

= 708 — 6,Tw® — HPTw® + A(Ta)ve + B(Ty) (7.33)

The initial objective ofv. is to remove the effect ol (7)) and B(T),). Therefore the initial
choice ofv, is:

ve = A~ (Tog) [-B(Tar) + 1] (7.34)

The vectors is an additional stabilizing term of the following form:
b =Twf + OiTw® — epa(9,0)T — Ase, (7.35)
whereA, € R3*3 is a diagonal matrix of positive gains.

7.5 Stability of the Attitude Error Dynamics

Applying the control,. of (7.34), (7.35) and the pseudo controls given in (7.27.8Xy, the

error attitude dynamics become:

. k
€o = —Nie, — p—eg + Zp(©)e,

)

by = —Ayey + o (,0) e, (7.36)

Té, = —é,Iw” — eya(d, 0)T — Ase,,
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The complete error vector of the attitude dynamics is givethle state vectofe,, e, el € Z
whereZ = R x £ x R3. Precondition for the continuity of the right hand side aB@) is for p3 3

to belong to the sep.

Theorem 7.1. Given thatps 5(¢) and the desired value @f; 3(¢) belong toP for everyt > t,, and

the choice of gains:

1=+ 607 A2 = kg + 1}

Ao min = C + 035 + 13

where\s i, is the minimum entry of the gain mati and 6y, 62, 11,12, > 0 with 616, >
1/2,mne > 1/2, then the error dynamics of the system described by equa(ffoB6)are expo-

nentially stable for any initial conditiofe, (to) e,(to) ew(to)] € Z.
Proof. The stability analysis of the attitude dynamics begins beswtering the below Lyapunov

guadratic function of the associated attitude variables:

1 1 1
V(ey, ep,e0) = §ei + 56"‘569 + 562;1—60_,

The derivative ofi (e, e,, e.,) along the trajectories of the attitude dynamics, for evegye, e,

m

Q andps 3 € P will be:

V(e € ew) = epéy + egég + el Té,

k
= —Awai — egAleQ — —ejgﬂe‘,_J — egAgew + eZ;Zo (©) ey

)

k
< <Ay llew|” - —36569 AL Hep,1||2 — A2 ||€p,2H2

— A2,min ||ew||2 + ep,l[l 0]Z0(0)e, + ep,2[0 11Z0(0)e,,
<=y ||6¢||2 — A1 ||6p,1||2 — 1,2 ‘ep,zH2 — A2.min llew|?
+ (0 [lep ]| = B2 llewl)” + (m [lep | = m2llew]))”

+[lep ]| lewll + flep.a| e
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< N llewl? = (wx = 03) [lepal” = vz =) [lep.l|”
= (20102 = 1) [lep 1| llewll = (2mnz — 1) [, 2| lew |
- ()\Q,min - 9% - 77%) ||ewl|2

< =g llewl® = 61 [lep | = w2 [[ep2]|” = ¢ llewl?

This proves the theorem. O

The exponential decay of the vectgyfrom Theorem 7.1 results in the following inequalities:
lepll < llepa(to)lle™™ =) and ezl < llepa(to)] e, vt >ty (7.37)

Theorem 7.2. For the system ii§7.36), given a desired orientation vectpy(t) with the vector
componenpg 3(t) > 0 for everyt > t,, the helicopter will not overturn, satisfying 3(¢) > 0 for
everyt > ty. The latter inequality of the vector componegt holds for every initial state of the

angular velocity and the orientation of the thrust vectaven thatps 5(to) > 0.

Proof. The necessary condition for the helicopter not to overtsyn (¢) > 0 for everyt > t.
This condition requires thafo|| < 1 for everyt > t.
If Property 7.1 holds, thep, 3(t) > 0 for everyt > . Letgitn pa3(t) = cmin > 0. Define
o

Since:

max*

the positive constant,, ... given byrg%x (p?l NORS 2(1&)) =2
> 0 b bl
min P?l,3(t) =1—max (p?l,l(t) + P?u(t)) = Coin =1—-C2 s

t>tg t>to

it follows that0 < C,,.,; < 1. From Theorem 7.1, the error variablgs; ande, » are exponen-
tially stable in€. The exponential stability of, itself can not guarantee thag s(t) > 0 V,t >

to. Considering only the exponential stability @f one gets:

—legi(to)le 1) 4 pg i < p3.i < |legi(to) e 710 4 pg i (7.38)
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Figure 7.7: This figure illustrates that only the exponémivergence o, can not guarantee
that||o|| < 1 foreveryt > to. Inthe depicted case although the inequalities (7.38) thacke
might exist a time* for which || o(¢t*)|| = 1.

fori = 1,2. The above inequality indicates that there might existahdonditionse, (), a de-
sired vectorg; and a timet* such that|e(t*)|| = 1. This case is depicted in Figure 7.7. Therefore,
the question that arises is what happens wheh— 1. Of course the goal is for evety> t, to
hold || o|| < 1.

From (7.32) the rates of change of the vegigft) in thex andy direction of the inertia frame
are given by:

) ) k
0= 04— Me, — p—eg + Zy(O)e, (7.39)

)

Consider the quadratic functiaR(||o||) = (1/2) ||¢||* of ||¢||. The objective is to prove that each

time || o|| tends to the vicinity ofl, thenR(||o||) < 0. The derivative of(|o||) is:

T
e
@ % 4 oT70(O)e,,

R(|lol) = 0¥6 = 0" 6a — 0" Are, — k
£3,3

T
0 €
£3,3

< 0"0a— 0" Aeg + llell [ Zo(O)l lew || — &
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QTe.Q
£3,3
o'e,
3,3

< Rl oall) + ey 60 — 0" Areg + [lews(to) | e~ — &
< R(|oall)+(llall+Alel llegl+llew (to) =)~k

< R([leall)+lleq(to) || (| 2all+A)e™ ")+ ley (to) e~ E0)
00" — 0" 0a
1=l
< R(Jleall) + 2 (|¢all + A) e"0710)  |le(to) ]| e~
_ el lell = lleall)
1—|lof?

-k

@ (llel)

2
V1= lell

wherex = min(k1, K2), A = max(Ay 1, A1 2) and:

= R(IxOI llell)

< [Ix(t, 04s 6as llew (to) DI =

X() = R(lleal) +2 ([[all+2) e =)+ e (to) || e~

@() = kel (lell — Cmaz)

When||g|| lies inside the set Cpae = (Chnae 1) itis obvious thato(|/el|) > 0. By solving
R(|lx|l, llell) < 0, with respect td|o|| when||o|| € C..az, after some algebraic calculations it is
easy to show that there exist&€a(||x(-)[|), with Cpnae < C*(-) < 1 for every||x(-)|| € R, such

that when||o|| > C* thenR(||¢|) < 0. The value ofC* is given by:

o If Cup > 0then:
Cmaac + M ’Y% +1-— C72nax

1

where:

() = e @cdi?(%)”)”
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\
|

Figure 7.8: This figure illustrates the existence of a valtewith C,,,.. < C* < 1 such that when
lloll > C*thenR(]|o||) < 0. The definition ofR(||¢||) is given in the proof of Theorem 7.2.

o If Cpyux = 0then|ogq|| = ||04|| = 0 for everyt > 0, and the value of€* is given by:

cwz):\/””'“z =

where:

’72(”)(()”) _ ||X(ta 0, Oal!ew(tO)”)H

SinceR(||o||) is a positive definite function dfe| andR(||¢||) < 0 for every||o|| > C* with
C* < 1, then||g|| is decreasing in the interv&C* 1) and never reaches 1, so the helicopter will
never overturn. This proves the theorem. A graphic reptasien clarifying the findings of this

proof can be seen in Figure 7.8. O

Due to the fact thaps 3 = CyCy, Theorem 7.2 implies tha#(t)|, |¢(t)| < /2 for every

t > to given that|0(to)| , [¢(to)] < 7/2.
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Lemma 7.1. Given that the conditions of Theorem 7.1 are met for the Bys1€7.36), the dynam-
ics ofe,, 3 will exponentially decay to zero, with the bound:

2v/2

C’ITI/ZTI/

lep,sll < leg(to) || e —1)

wherex = min(k1, k2).
Proof. From Theorem 7.2 it has been proved that > 0 andpg 3 > ¢, fOr everyt > ¢. Thus:

1 1
<
P33+ Pd3 ~ Cmin

P33 1+ Pd3 = Cmin =

Regarding, 3 one has:

. ) ) P33 — P?i,:'a P31~ Piat P?z,l + p?i,z
3= P33 — Pd3 = =
’ P33+ pPd3 P33+ Pd3
_ —(p3a+ par)(p31 — par) — (P32 + pa2) (P32 — pa2)
P33+ Pd,3
_ —ep1 (P31 +pa1) — €2 (P32 + pa2)
P33+ pPd3
The norm ofe,, 3 will be:
P31+ Pd1 P32+ pd2
lepall < | 22081 ey 4 | 2202y,
P3,3 + Pd,3 P33+ Pd3
22 2V/2 (i
< legll < == [leg(to) || e 110
min Cmin

O

An immediate consequence of Theorem 7.1 and Lemma 7.1 islioeving property, which
summarizes the bounds of the noje),||. Those bounds are useful in the analysis of the transla-

tional error dynamics.

Property 7.3. Given that Theorem 7.1 and Lemma 7.1 hdg,|| will have the following bounds:

7.3.1. |le,|| < 2
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7.3.2. For the components of the error vectgr

Hep,iH <g¢ ||€Q(t0)|| e_"(t—to)

wheree; = 1fori = 1,2 andez = 2v/2/cpin.

7.3.3. The vectoe,, is exponentially stable for every(ty) € £ x P with the exponentially

decaying bound:

Comin + 2V/2 lo
llepll < 5 ley(to) ] e )

Cmin

Proof. Due to orthonormalityl|ps|| , ||p4|| = 1. Consequently, Property 7.3.1 is derived by:

leoll = \/(p3 — pa)" (p3 — pa) = \/pgp:a + P4 pd — 295 pa

=\/2—2pfpa <2

Property 7.3.2 can be easily derived by Theorem 7.1 and Levnindor the exponential bound of
Property 7.3.3 the following will hold:

||ep|| < ||ee|| + ||€p,3

(- 2v/2 (-
< leg(to) | e 710) 4 222 ey (to)[| e+ T0)
min
; 2vV2
< Cmin + \/_Heg(to)” e_,;(t—to)
Cmin

Cmin T 2\/5

mwn

lep (to) | e —1)

Lemma 7.1 and Property 7.3.3 provide a very conservativadbon e, 3|| and|le,|. How-
ever, the useful attribute of those is the exponential defay 3 ande,, which is necessary for the

stability analysis of the translational error dynamics.
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In this Section, Theorem 7.1 establishes the exponenéhllisy of the attitude errofe; e, e,,]” .
In addition Theorem 7.2 guarantees that the helicoptematiloverturn in its effort to track the
reference trajectory, achieving the bounding conditioin |¢| < /2 for everyt > t¢,. Based on

those two results, from Property 7.3.3, the exponentiahglet the orientation errar, follows.

7.6 Stability of the Translational Error Dynamics

This Section examines the stability of the translationedredynamics. The first step towards
the stability analysis is to perform the following lineaats transformation:

)= vi| I3z I3x3| |ep (7.40)

Yo 0  I3x3| |ew

The state transformation above will facilitate the stépitinalysis of this Section. The resulting

form of the translational dynamics is:

v=f(y) +9t ye, =Gt y,ep) (7.41)
where:
- X (W I3y
P L GRS A L ot (7.42)
—Ya(y2 + 1 (Wyr)) I3

The following properties are required to prove global asiotip stability of the system in (7.41).

Property 7.4. For the nominal system:

v=f(y) (7.43)

with f(y) defined in(7.42) y = 0 is an equilibrium point. Given that, for the saturation léef

the vectorS (defined in(7.20)), the following inequalities hold:
1. Lgyi < M2,i andLl,i < Ml,i fori = 1,2, 3.

2. Ml,i < %Lgyi fori = 1,2, 3.
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Translational Error Dynamics

vy = fly) +g(t,y)e,

Attitude Error Dynamics

Figure 7.9: Block diagram of the complete helicopter dyranaifter the transformation of the
translational error states.

Then, based on the findings of [102], the nominal systelf7 @f3)is GAS.

The resulting helicopter dynamics after the state transétion can be seen in Figure 7.9. The
translational dynamics subsystem can be viewed as a pettWGAS nominal system where
the perturbation term is driven ly. The final form of the complete helicopter dynamics is a
nonlinear cascaded time-varying system. The stabilitp@iies for this class of systems has
been investigated in [63]. According to [63], in order foetholutions of the system in (7.41) to

be UGAS, the following sufficient conditions should hold sitaneously:
e C.1: The nominal system of (7.43) is UGAS
e C.2: The integral curves af, are UGAS
e C.3: The solutions of the system in (7.41) are uniformly glgbbounded (UGB).

Conditions C.1 and C.2 are guaranteed by Properties 7.4.8r®] fespectively. The system in
(7.41) is not Input to State Stable (ISS). The ISS propertyldisignificantly facilitate the proof
of condition C.3. Consequently, a different approach iWéd, which exploits the Lipschitz

properties oG (¢, y, e,) with respect tay and the bounds af, provided by Property 7.3.

Property 7.5. The functionf(y) defined in(7.42), is globally Lipschitz iny, with Lipschitz con-
stant:

Dy = V6(1 +27Lo + 2wina0 "L1 "L2)
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wherew,,,, = max (w1, ws, ws) and*Ly,*Ly positive constants such that:
YV $1,89 € R3 |Ei(81) — Ei(82)| < ELi |S1 — 82| fori = 1,2.

Proof. For the functionf : RS — R® defined in (7.42), for any, = € RS the following inequali-

ties will hold:

1f(y) = f(2)] =
Y2 — 22 — B (Y2 + X1 (W) + (22 + X1 (W21))
=Y (y2 + X1 Wyr)) + B2 (22 + Z1 (W21))
< lyz — 22 = S2(y2 + 51 (Wyr)) + S2(22 + 51 (Wz1))|
+ | =2(y2 + =1 (W) + Ba (22 + 1 (W2))|
<y — 2ol + 2] =Ba(y2 + X1 (Wyn)) + B2(22 + 1 (Wz1)) |
< ly2 — zo| + 27Lafya — X1 (Wyr) — 22 + X1 (Wz1)|
< (1+2%Lo) |y2 — 22| + 2Wimaz L1 L2 [y1 — 21
< (1+ 2Ly + 2Wmae "L1"La) (Jy1 — 21| + |y2 — 22|)

< (14 2°Ly + 2Wmaa "L1"La) V6 ||y — z||
Thereforef (y) is globally Lipschitz iny. O

The existence ofL1, *L, is guaranteed by property P.5 of Definition 7.1.

Property 7.6. For any vector functionl(t) € R? that is uniform continuous with respect#and
ld(t)|| < do for everyt > to with §p a positive constant, the functiarit, y)d(t) := I'(t,y) is
globally Lipschitz iny with Lipschitz constant:

Umaa:

Dg((SO) = 60 (ELQ + wmaxEleLZ)\/ﬁU -
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Proof. Leta(t) = —pZ + ges. For the functiorl'(¢, y) = g(t,y)d(t) with T : [0 0o] x RS — RS,

for anyy, = € RS the following inequalities will hold:

IT(t,y) = T(t, 2)l| < V2 ]d®)U(t, )—d(t)U(f 2|l
—U?(t,2)
+U( z)

< BoVZ|U ) — Ut )] < 6V/2 H

SoV2

2a7(t)(S(y) — S(2))
+(S(y) +8(2)"(S(y) - S(2))|

0 (2l + 1) + SGI ) 15@) - S

o fUmln
Unma
< fovV2-2 U

min

= [Za(y2 + 21 (Wyr)) — B2 (22 + Z1 (W) |

U,
< 50\/_Um(m ("La |y2 — 22| + Wiz L17La |y1 — 21|)

mwn
Umaz

< 60 ("La + Winaw"L1"La) V12 i

man

ly — =l

The existence ol/,,;., Unmae 1S guaranteed from Property 7.2 given that Property 7.1tis-sa
fied and the second derivativesygf(t) coordinates are bounded. The above inequality implies
that there always exists a Lipschitz constant for every @mate choice op’(¢) and for every

boundedi(t) € R3. Thereforey(t,y)d(t) is globally Lipschitz iny. O
The following lemma is an immediate consequence of Prageiti5 and 7.6.

Lemma 7.2. For any vectord(t) defined in Property 7.6, the perturbed system:

v = fly) +g(t,y)dt) =Tt y) (7.44)

is globally Lipschitz iny with Lipschitz constant:

Do (80) = Dy + Dy(0)
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Therefore, the solutions df7.44)exist, are unique and do not have a finite escape time for any

arbitrarily large time interval.

The error vectoe,, is continuous and from Property 7.3|4,|| < 2 for everye,(ty) € £.

Therefore:

Lemma 7.3. Based on Lemma 7.2, due to the continuity and boundedneiss wéttore,, the
system irn(7.41)is globally Lipschitz iny, with Lipschitz constanb = Dy(2), therefore the
solutions of(7.41)exist, are unique and do not have a finite escape time for aoiyrarily large

time interval.

Lemma 7.3 is of particular interest for the proof of the fallog theorem, which guarantees

the global uniform boundedness of the solutions of the sysite(7.41).

Theorem 7.3. Given that Theorems 7.1 and 7.2 hold, the solutions of thersygiven by7.41)

are UGB for every time > .

Proof. The nominal system

2= f(2) (7.45)

of (7.43), based on [102] is globally asymptotically stad\S). Since it is an autonomous sys-
tem, it will be uniformly globally bounded (UGB) as well. Tiedore for anys > 0 (arbitrarily

large) there exists > 0 which may depend odi such that:

[2(t) | <0 = [lz(B)]] < B(S)  VE=tg

For the perturbed term of the system in (7.41), for any RS using Property 7.3.1 the following

bound will hold:

lg(t,v)e |l < V21Ut y)epl| < 2V2Umar = E
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Applying the Gronwall-Bellman inequality to the integralrges of the nominal (7.45) and per-

turbed system (7.41), with(tg) = y(t9) < ¢ for any finite time interval witht > ¢, one obtains:

E t—to
ly@1 = 1@l < lly@®) - @)l < 5 [em ) 1]

= Iyl < 86) + 5 [207) = 1) = Bt~ t0) (7.46)

Sl &=

with D defined in Lemma 7.3. Let; ;,y2,; ande,; with i = 1,2, 3 denote the' component
of the vectorsyy, y» ande, correspondingly. The dynamics of th#¢ component of the perturbed

system (7.41) will be:

U1, = Y2, — 02, (Y2, + ori(wiyri)) — vty epi)

Yo = —02,i(y2,i + o1i(wiyr i) — vty ep)

wherev;(t,y,e,;) = U(t, y)ep,. Using Property 7.3.2 one has:

it v, 0l = Ut y)ep,l
< Unaa llep,ill < Umaa€i l|eg,i(to)]| e ")

< 2Upag eie_n(t_to)

To prove uniform boundedness @it is sufficient to show uniform boundednessaf;, v ;
fori = 1,2,3. From this point forward of this proof, the subscriptill be omitted to ease the
notation.

From the exponential decaying boundhdf) there always exists a finite tinie* = ¢y + t*

with ¢* > 0 such that:

« L
2Unmaz e "t < Il
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Consider the Lyapunov functiovi, = %y% From the above inequality and usitg= T* — t*, the

derivative ofV; along the trajectories of the perturbed system will be:

= —y202(y2 + o1(wyr)) — 12U (L, y)e
o2(y2 + o1(wy1)) + |y2| Unaze |leo(to) || € —r{t=to)

( )
73 )

Y202 (y2 + o1 (wy1)) + |y2| 2Umazee ™™ ™
73 )

K(t—T*)
< - Y2 +o1(wyr)) + |y2| b =T
For everyl|yz|| > M; + &L = 6, and for everyt > T* one will get:
Vo < —y202(y2 + o1 (wy1)) + — |y2| < —— |y2| + |y2|
Ly
< = v

Then from [43, Theorem 4.18] for evefy»(T*)| > J, and for every > T* there exists & L
function 3, and a finite time; > 0 dependent ofi,(7™*) andd, such that the integral curve of

y2(t) satisfies:

ly2()] < B2 (ly2(T)I| 2 —T7) V I"<t<T

lly2(t)|| < o2 vV ot>Ty

whereT} = T* + t;. Clearly, if |yo(T*)| < 09 then|ys(t)| < 62 for everyt > T™* rendering
t1 = 0 andT; = T*. Those facts indicate that there always exist a finite tihe> T* after which
the integral curve ofj;(¢) will remain bounded in the séky = {ys : |y2| < d2} for any initial
conditiony,(ty) € R. Moreover, the asymptotic convergence (or the confineméenw = 0) of
y2(t) to the bounded sek, begins at the finite tim&™. Lemma 7.3 guarantees that the trajectory

of y2(t) does not have a finite escape time in the intefial™] and remains bounded.
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From (7.46), given thatys(t9)|| < 0 the trajectory ofy,(¢) for ¢t € [ty 7] will be bounded by
ly2(t)|| < B(6,t*) = By(5). Hence, for every > 0 with ||yz(to)| < o

lya(®ll < max (Ba(6), B2(B2(6),0),52) = Ra(6) ¥t = tg

Obviously the bound?z(5) > 0 is independent fromy. Therefore, the solutiopy(t) is UGB.

After the time threshold’ the argument of the saturation functief will be bounded by:

L 5
ly2 + o1 (wyr)| < |ye| + o (wyr)] < 2My + 71 < 6L2 (7.47)

To this extent, when > T7, the saturation function,(-) operates in its linear region. Continuing
the above procedure, consider the Lyapunov functipn= %y% The derivative ofl; for every

t > T will be:
) Ly
Vi =yi(—oi(wyr) — U(t,y)epi) < —yro1(wyr) + T Y1

Consequently, for every;| > Li/w = 6é; andt > T will yield, Vi < —%Ll ly1|. Once
more there exists &L function 5, and a finite timeg depended of; (73 ) andd; such that when

ly1(T1)| > 41, the integral curve of (¢) satisfies:

Iy < 81 (lya (T = T1) V i <t<T

ly1(t)]] < o1 YV ot>T

whereT, = T + to. If |y1(T71)| < 61 theny; (¢) remains bounded in the s& = {y; : |y1| < 61}
for everyt > T renderingt, = 0. In either case for any initial conditiog (¢9) € R there
exists a finite timé/, > T after which the trajectory; (¢) remains bounded in the sAt;. The
convergence (or the confinement whegn= 0) of y; (¢) to A, starts whent > T7. The existence of

y1(t) in the time intervalt, 71] is guaranteed by Lemma 7.3.
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From (7.46), given thaty; (t9)|| < ¢ the trajectory ofy; (¢) for t € [ty T1] will be bounded by
lly1(t)|] < B(d,t* +t1) = B1(6,t1). Hence, for every > 0 andt > ¢y with ||y (to)|| < o:

lyn Il < masx (By(8,42), B1(B1(6:41),0),81 ) = Ba(3,1)

The timet; is dependent on the valug(7™) andd,. Both of them are independent ©f To this
extentR; (4, t1) does not depend on the initial timgwhich proves the uniform global bounded-
ness of the trajectory; (¢).

Sincey; i(t), y2,:(t) are UGB fori = 1,2, 3 then same holds for the complete staje&),y»(t)
of the system in (7.41). O

Theorem 7.3 satisfies the remaining condition C.3 whichgsired to guarantee that the
solutions of (7.41) are UGAS. Based on the work of [63, 94| 108 stability of the helicopter

translational error dynamics is formally stated in thedaling theorem:

Theorem 7.4([63, 103]) Given that the nominal system(n.43)is UGAS (Property 7.4), the
orientation errore,, is exponentially convergent and bounded (Property 7.3),tae solutions of

(7.41)are UGB (Theorem 7.3), then the solutions of the perturbstegy in(7.41)are UGAS.

Theorems 7.1, 7.2 and 7.4 guarantee that the controllegriesijectives are met. More spe-
cific, for any desired position reference trajectpfywith bounded higher derivatives satisfying the

requirements of Property 7.1 and for every desired yaw Ingagli:

Jim {lp" —ppll =0 lim [l — 4[| =0
—00 t—o0

and 0(t)], |6(t)] < 7/2 Vit >t

for any initial condition[p’ (to) v* (to) w”(to) ¥ (to)]? € RO given that the helicopter is not

initially overturned (0(¢o)| , | (to)| < 7/2).
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7.7 Numeric Simulation Results

This Section presents the numeric simulation results o€tmerol algorithm. For the heli-
copter model, the complete representation of the thrusbrvecused given in (7.8), which in-
cludes the parasitic elemens,;, Y, andYr. However, the controller design was based on the
simplified force vector representation of (7.9). Furthemedhe total body force and moment vec-
tors of (7.8) and (7.10) are additionally perturbed by ttaltdrag force and moment vectofg
andr7, respectively. The drag forces and moments are produceetsfiect of the relative wind
velocity and air pressure, to the surfaces of the helicpheselage, vertical fin and horizontal
stabilizer. To represent the complete drag force and mowrestibrs we have adopted the model
given in [66], which is a simplified version of the more eladierdescription presented in [29].

Those vectors are:

—d%vﬁxVoo thZf Vo] vog
fé = —dgvgiyVoo - dzf [Vyf| Vo Td = | —2psd |ups| vps (7.48)
—df (VE, + ;) Voo + d* |vps| vps —wtde [vuf| vof

Wheredﬁ, d{, dﬁ, dzf, d* are constant parameters that depend on the air density basike
geometry of the fuselage, the vertical fin and horizontddiszer. The constant;; denotes the
main rotor’s induced velocity while;, is the coordinate of the horizontal stabilizer in the
direction of the body frame. The relative wind velocity \@ct? = [vZ, vZ, 07 ]" is given

by v} = v? — v, wherev), denotes the wind velocity in the body frame coordinates. rélseof

the velocity components involved in the drag force and mdmedel, are:

Vyf = Vg p + 47 Vhs = Vg » — Thsq (7.49)

Voo = \/(vgiyc)2 + (vgjy)Q + (v8, + ui)Q (7.50)

In addition to the wind effects, the numeric simulator irt#a the servo dynamics which are

typically represented by a first order filter [30]. Therefdie servo output$),, T of the main
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and tail rotor are given by:
TSTM = —TM + T TSTT = —TT + T (7.51)

wherer, is the rotors time constant. The applied flapping ang|ésare produced by the flapping

dynamics model established in [30, 70], namely:

Tfa =-—Tpwy —a+a Tib=—Tpw, — b+b (7.52)

wherer; is the main rotor's dynamics time constant. The flapping @sglb are also saturated
to +0.25 rad, complying with realistic limitations of actual rotor cogirations. The nominal
helicopter model parameters, used by the controller, aadradd by [29] for the MIT’s small scale
helicopter X-Cell.60 and presented in Table 7.1. The parameters related to thdatces and
moments as well as the servos time constants are given ie Tahl The actual helicopter model
of the simulator, includes parametric uncertainty thatheadifference of up t80% with respect
to the nominal values used by the controller. All of the aboreertainty injection is necessary
for investigating the robust capabilities of the controlieder model and parametric uncertainty
which occurs in real life applications.

The proposed control scheme can be easily modified in ordachade integral components
that will attenuate the steady state tracking error, cabydtie parametric and model uncertainty.
In particular, the nested saturation vecsoand the desired angular velocity componeptde-

fined in (7.20) and (7.27), repsectively), can be enhancéutve position and yaw integral error,

as follows:
SNy y1,y2) = X3 (y2 + X <W2y1 + X1 (Wh (p + y1))>) (7.53)
Cy | S,
=g [m - Fﬁq — Apey — /\nw] (7.54)
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Table 7.1: Helicopter parameters.
T = diag(0.18,0.34,0.28) kg - m?, m = 8.2 kg, g = 9.81 m/sec?

¢y =—091lm, zs = —-0.08m, z,, = —0235m, T, =Y =y =0
Kz =52 N -m/rad, CM = 0.004452 m/v/N, DM = 0.6304 N - m

Table 7.2: Drag and servo parameters.

d} =0.06,df =0.132, df =0.09, d2’ =0.0072, d"* =0.006 kg/m,

xps=—0.T1 m,u; =4.2 m/sec,7,=0.1 sec, 7y =0.1 sec

Table 7.3: Controller gains.

Ms; 22 | Ay diag(3.1,3.1)
L 215 A, diag(6,6,3)
My, 7 | W diag(8,8,8)
Lo 6.5 | W, diag(0.1,0.1,0.1)
M, 2 | Ay 2
Ly; 15 |\, 2

fori =1,2,3 k 0.1

wherer), = e,, 1y, = ey, Ay > 0 andWy, W, are diagonal matrices of positive gains. In this case,
the requirements of Property 7.4 becomg,; < M; ; fori,j = 1,2,3 while M;; < L;j;q; for
j=1,2andi=1,2,3.

The controller performance, in terms of tracking accurauy dexterity, was tested by the
execution of two different maneuvers. For the first maneuterhelicopter reaches a set point

while its velocity exponentially decreases and its headémgains constant. The desired trajectory
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for the first maneuver is:

20 — 20e 025
pr(t) = | =30 + 30e0-25¢ PY(t) =0

—10 4 10e~ 45

The second maneuver is composed of two parts. In the firsthpattelicopter lifts vertically
for 7 seconds. Then it performs af Shaped” curved path while it continues to lift. Throughout
the whole maneuver the vertical velocity is exponentialtgrdasing while the heading remains

constant. For the second maneuver, the desired positioheading are:

prt)=(0 0 —7(1—e )" fort <7
20(1 — cos ZZ(t — 7))
pr(t) = | 10sin(%(t - 7)) fort > 7

_7(1 _ 6—0.3t)

d}r:O

During the execution of both of the maneuvers, the compaenafithe wind speed in the inertia
coordinates are (im/sec):

vl (t) = 2sin (t) v, (t) = 2cos (0.75t + 7/2) vl (t) =0

w

The controller gains associated with the attitude dynamieduned based on the gain require-
ments of Theorem 7.1. They are sulfficiently high in order figr helicopter to rapidly obtain its
desired orientation. The saturation gains are tuned basétkeayain requirements of Property 7.4.
In addition, 5, . and M3 3 comply with Property 7.1. To compensate the effect of thetangue
Qs and the model uncertainty, a steady state value of the flg@pigles is required. This steady
state value, through the parasitic forceg;, Y5, andY causes an offset in the translational po-

sition error. This steady state offset is minimized by iasiag the gains of the diagonal matrices
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Table 7.4: Controller outline.

=it
Py Py + gez + S(ep, ev)
[=Dr + ges + S(ep, ev)|
Trr=m || =pr. + ges + S(ep, e

P _ :

=710 (e 5
Cy |,i S

re= ¢ [wr —a - M%]

=TwE + OETw? — eya(p,0)T — Age,

ve= A"YTy) [-B(Tw) + 7

Wy, Ws. The controller gains used for the simulation are shown bid&.3. The choice of the

linear saturation function satisfying the requirement®efinition 7.1 is the following:

,

s |s| < L

o(s) = q sgn(s) [Sin <2(|]s\l[__LL)7T) MoL 4 1(]s| - L) —i—L] L<|s|<2M —L

sgn(s)M |s| >2M — L

\

The position response in the inertia coordinates, versidéired trajectories with respect to
time, are illustrated in Figure 7.10 and Figure 7.11 for the maneuvers. The helicopter position
in inertia coordinates is illustrated in Figure 7.12 andurgy7.13. The orientation angles, for the
two control schemes, are depicted in Figure 7.14 and Figd® Finally, the rotors thrusts and
the flapping angles can be seen in Figure 7.16 and Figure TtiE/numerical results illustrate the
controller’s successful tracking performance. Even titige proposed design is a model based
controller, it exhibits significant robustness attributesards considerable parametric and model
uncertainty. Figures 7.14 and 7.15 indicate that the rallgitch bound which guarantee that the

helicopter will not overturn, is met even in the aggressiad pf the maneuvers.
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Figure 7.10:First maneuver Reference position trajectory (dashed line) and actuaidper
trajectory (solid line ) expressed in the inertial coordé@sawith respect to time.

7.8 Remarks

This Chapter has presented a backstepping position anihigaaacking controller for heli-
copters. The helicopter model is represented by the rigily leguations of motion enhanced by a
simplified model of force and torque generation. The col@ra@ssumes full availability of all the
helicopter’s state variables of the translational anduatti dynamics. The design outline follows
a typical backstepping design for feedback systems. Thieetod the pseudo controls is taken
with caution avoiding unnecessary terms cancellationss f@sults in a controller that includes
a minimal amount of terms required to stabilize the overg@team. A summary of the controller
inputs and pseudo controls is given in Table 7.4.

The main idea of the design is the use of the direction and malgof the thrust vector to
stabilize the position error dynamics. The choice of thekbpping pseudo controls results in

two interconnected subsystems representing the tramsdtand attitude dynamics errors corre-

spondingly.
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Figure 7.11:Second maneuveReference position trajectory (dashed line) and actuadyer
trajectory (solid line) expressed in the inertial coordasawith respect to time.

The translational error dynamics are controlled by a nesat¢uration feedback term and at the
same time are perturbed by a bounded function of the dirgatierror. The attitude control design
is based on the structural properties of the rotation maitnikit is enhanced with special terms
that can guarantee that the helicopter will not overturrgreffort to track the predefined position
reference trajectory. The attitude error dynamics will &edered exponentially stable driving the
translational error dynamics globally uniformly asymytally stable.

The philosophy of this work dictates that for each contralesign a standard identification
procedure is proposed that will provide the model paramseitthe helicopter based on exper-
imental flight data. The applicability of the controller isited if the designer does not have a
practical method to extract the model parameters of thedyater. The parametric identification
of nonlinear continuous dynamic systems can only take ptattee time domain. However, time
domain parametric identification methods for flight systemescomputationally inefficient and
less effective compared to frequency domain identificati@thods [105]. In the time domain
approach each iteration of the identification algorithmurees the integration of the nonlinear

differential equations of the system for the calculatiothaf cost function value. This procedure
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significantly increases the computational load. In additio real life applications the controller
algorithm is executed in a microprocessor on board the ¢yatiée. The processing of the algo-
rithms takes place in discrete time and the sampling effemtilsl be taken into account.

Although the proposed controller exhibits significant retioess to parametric uncertainty, still
a fair knowledge of the model parameters is necessary. Dilretack of an efficient identification
method the testing of the proposed algorithm is restrictdy tw numeric simulations based on the
MITs X-Cell .60small scale helicopter parameters.

The goal of the next Chapter is to present a backsteppingitdgobased on the discrete non-
linear helicopter dynamics. The discretization of thedwdier dynamics facilitates the identifica-
tion procedure since a simple recursive least square gigodan be used for the determination of
the model parameters based on the flight data. Due to theetimtion of the helicopter dynamics
the new design is not equivalent with the backstepping otlatrdescribed in this Chapter. The
proposed controller of the next Chapter provides a pradcimation which can be directly applied

to real life applications. The performance of the contraleevaluated using the-Planesimula-

tor.
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Figure 7.12:First maneuver Reference position trajectory (solid line) and actualduogiter
trajectory (dashed line) with respect to the inertial axis.
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Figure 7.13:Second maneuveReference position trajectory (solid line) and actualdugiter
trajectory (dashed line) with respect to the inertial axis.
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Figure 7.14:First maneuver Euler’s orientation angles.
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Figure 7.15:Second maneuveEuler’s orientation angles.
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Figure 7.17:Second maneuveMain and tail rotor thrust'y;, T and the flapping angles b.
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Chapter 8: Time Domain Parameter Identification and Applied Discrete Nonlinear Control

for Small Scale Unmanned Helicopters

This Chapter deals with the dual problem of parametric ifleation and nonlinear control
of helicopters. The goal of this Chapter is the developméptactical identification and control
solution for direct application to an autonomous helicofitght system. Although most con-
troller designs are in continuous time, this chapter cansithe discrete time dynamics of the he-
licopter. The shift of the initial helicopter control praph to the discrete time is twofold: Control
algorithms are executed by microprocessors. The disatitiz effect of the helicopter dynamics
should be accounted by the controller. In addition, time dionparametric identification is much
simpler and computationally more efficient when the systgoagons are discretized.

A simple Recursive Least Square (RLS) algorithm is usediemparameter identification in
the time domain, the objective being the derivation of systlynamics that are both minimal in
complexity and accurate for control design in discrete tifitge controller is designed based on a
discrete time backstepping technique, for the trackingrefiefined position and yaw trajectories.
The developed controller provides design freedom in theegence rate for each state variable
of the cascade structure. This is of particular interestesgontrol of the convergence rate in each
level of the cascade structure provides better flight resBlbth the identification part and control

performance are evaluated usiMePlane

8.1 Introduction

The concept of backstepping control for continuous timéesys in a cascade form has been

well studied and analyzed [43] including adaptive modifaad [49] to cope with systems includ-
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ing parameter uncertainties. In the case of the discrete siyatems there has been significant
less work to the specific field. The most distinctive work @nfr[112] dealing with the adaptive
backstepping control for discrete time systems.

The first objective of this Chapter is the design of a nonlireetroller for tracking of pred-
ifined position and yaw trajectories. A discrete time baggping controller based on the non-
linear discretized equations of the helicopter is propo3ée controller provides more design
freedom compared to the continuous backstepping coumtexigarithm proposed in [11, 21],
since the convergence rate of each state variable of thadastructure can be manipulated.
Furthermore, the stability of the resulting dynamics casibgly inspected by the eigenvalues of
a linear system without the necessity of Lyapunov’s fun@iorhose eigenvalues are determined
by the designer.

The second task of this Chapter is to examine a standard steelreast Square (RLS) algo-
rithm for parameter estimation of the nonlinear discreteetdynamics of the helicopter. Both the
identification and the control results where successfelgad inX-Planefor the Raptor 90 SERC

helicopter.

8.2 Discrete System Dynamics

The discrete nonlinear model of the helicopter dynamic®is/dd by direct discretization
of the continuous time model presented in the previous @naphe TPP dynamics are assumed
to be very fast in comparison with the rigid body dynamics anly their steady state effect will
be regarded. This is a typical assumption that takes platteeinonlinear controller designs that
exists in the literature. The dynamics of the flapping motomtreated as unmodeled uncertainty
which is compensated by the robustness of the control &tgoriTherefore, regarding the TPP

angles the following hold:

a= Kquon (8.1)
b= Kyuja (8.2)
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whereK,, K, are constant parameters. The magnitude of the main andtailthrust will be

considered proportional to the collective control comngillerefore:

TM = KMucol (83)

Tr = K1upeq (8.4)

whereT),, Ty are the magnitude of the forces of the main and tail rotoreetigely while K,
K are constant parameters.
Using (8.1)-(8.4) and by ignoring the effect of the antigtoe @, to (7.10) for simplification

purposes, a compact form of the external torque appliedetbi@licopter is:
72 = Av. + Bugy, (8.5)
where

T
Ve = (ulatucol UjonUcol uped) (86)

with A € R3*3 and B € R3*! being parameter matrices.
From (7.1), (7.13), (7.3), (7.14), (7.5) by using Euler'giiit method for the approximation

of the continuous derivatives, the following equations@brtained:

Peys = Py, + Tsv; (8.7)
Uiy = U + 1 Rye3ucol ), + e (8.8)
wp, = wp + H(wP)I(Z, Ts) + A've s + B'ucorn (8.9)
Opr = O, + T, U (0, )P (8.10)
Ryoy = Ry + ToRyOP (8.11)

wheree; = [0 0 1]7 andT} denotes the sampling period. In (81jw?) is a matrix ofR3*?

composed only by nonlinear functions of the angular vellegitvhilel(Z, T}) is a vector ofRP>!
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composed by inertia terms and multiplied by the samplingpper;. Both of them satisfy:

(wPI(Z, T,) = ToT Tw? x w?] (8.12)

Regarding the rest of the terms in (8.8),(8.9) the followadds:

oy = —TsBar (8.13)
m

ag =Tsg (8.14)

A =T,77'4 (8.15)

B' =T,77'B (8.16)

An important observation should be given regarding therdiscapproximation of (8.11). In-
tegration of translational and rotation dynamics of a rigadly’s motion under a potential requires
special attention. From [57] Runge-Kutta methods do natgamee the Lie group structure of the
configuration space. Most importantly the quantRy,, R’ , drifts from the identity matrix as
the simulation time increases. A more accurate integratfdid.3) could take place by the use of
discrete variational integrators [35, 57], which pres@hggeometric properties of the Lie group.
The disadvantage of this approach is that the proposedusteuaf the discrete equations -although
providing more accurate numerical solutions- is very cacaped for control design. To this extent
an important condition for (8.7)-(8.11) is that the samglirequency is small enough that (8.11)
can be considered as a perturbation value of the rotatiorixn@ihe experimental results have
illustrated that a frequency 6D H z is adequate enough for (8.11) to provide accurate resugis ev

up to a horizon of two time steps given the current value otthefiguration matrix and can be

used for control design.
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8.3 Discrete Backstepping Algorithm

Consider a helicopter described by the difference equaii®i7)-(8.11). The objective is to de-
sign a nonlinear controller stabilizing the positiphand the yaw angle, to the refrence values

pr.,, andiy. ., respectively.

8.3.1 Angular Velocity Dynamics

Considering (8.9) an obvious control choice for cancelingtbe nonlinear terms of the angu-

lar velocity dynamics is:
Ve = At (—wf — I(w)(Z, Ts) — B'ucor + 17k) (8.17)

wherev, = [0y, U2, 637k]T.The angular dynamics become:

Wiy = By (8.18)
while: .
Ulat,k Ucol K 0 0
ulon,k = 0 ucol,k 0 ,UC,k: (819)
Uped,k 0 0 1

The existence of the inverse of the left matrix on the rightchside of (8.19) is guaranteed by
the fact that the collective contral.,; , should be at all times different than zero since in flight

operation some thrust is needed to compensate for the wieiglet

8.3.2 Translational Dynamics

The equation of translational velocity is given by (8.8)indsthe notation of Chapter 7, let

Ry = [p1,x p2,x p3,1) Wherep; , with ¢ = 1,2, 3 are the column vectors of the rotation matrix. Then
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the difference equation of the translational velocity cawhitten as:

UI€+1 = Uli + 103,k Ucol i + ages (820)

The column vectops ; is a unit vector with changing direction depending on thesEah-
gles. The idea similar to Chapter 7 and [21] is to change treztion ofp; , and at the same time
adjust the magnitude af.; , to a desired vector which will control the translationalogity
dynamics. Therefore the dynamicsm@f, u.., . are the function which should be forwarded in
time to develop the backstepping scheme.dgt,., = 1, and by considering (8.11) and also

@563 = —é3w5 then:

P3,k+1Ucol k+1 = Ry ezpuy,
.~ B
= Ryesp;, — TsRyé3w, [y

= Ry, (e3 — Tsésw?) (8.21)

Let u,.1 = (. then by forwarding in time the above equation becomes:

P3 k+2Ueol oz = P (63 - Tsé?,w;irl) Hr1
= Rk+1 (6’3 - Tsé31~7k) Ck

Tsl~72,ka
- Rk+1 _Ts,Dl,ka - Xk (8.22)

Ci

whereX, is a vector as defined below. From (8.22) the following edeslihold:

G =ei BRI &, (8.23)
—1
,ﬁl,k . _Tsé-k 0 pg—:k.HXk (8 24)
ﬁQ,k 0 Tka p’{,k.t,.le
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U1, ———

Z, Uy
I i I _ I J— I I —
V2, — Zpin = X, —> Vi =0t 12y + agey > o1 Dryr = Pr + Lsvy 271 D

Rk+1

2_2 Ucol

Figure 8.1: Interconnection of the helicopter dynamicag$B.23)-(8.27). The term~! denotes
a unit time delay.

Since(, = uqo - the existence of the invertible of the left matrix on the tipand side of (8.24)
is guaranteed by the fact that the collective contrg) , should be different from zero since in
flight operation some thrust is needed to compensate for énghivforce.

Let Z,,;, = p3rilcorr: With i € N. The associated equations related with the translational

dynamics up to now are:

p£+1 = pi + Tsvé (825)
Uy = U + 012 + ages (8.26)
Zk+2 =X, (8-27)

The error dynamics of thg’, v* and Z state variables are:

Ep,kt1 = p£+1 - p’f‘,k-&-l = _p’f‘,k+1 +pi+ Tsvé,k + Tsey i (8.28)
Co k1 = 'U1€+1 - 'UcIl,k-H = _'UcIl,k-H + 'Uzi + O‘1‘Zd,k + ez + d1lz, (8.29)
€z kr2 = Ziy2 — Zd,k+2 = _Zd,k+2 + X (8-30)

Choose the desired values:

1
Ucli,k - T [p’f‘,lﬂ-l — P+ Klep,k] (8.31)
S
1
Zd,k = a_l [Uin,k+1 — U,ﬁ + K2ev,k — Ozzeg] (832)
X = Zg e+ Aez i+ Noez (8.33)
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(8.33) to the translational dynamics described (8.28}dBone obtains:

whereK, K, A1, Ay are diagonal gain matrices. After applying the desiredeslof (8.31)-

-ep,k+1- -Kl T, 0 0 [ €p.k ]
€y ki1 0 Ky 0 o €,k (8.34)
€z k+2 0 0 A A €z k+1
ezpi1| | 0 0o 1 0 ][ ezn |

The eigenvalues of the above equality are determined byaims &, K» and the polynomial

22 — A1z — Ao. Provided that the eigenvalues of the above system liegrtbiel unit circle the
translational dynamics will be globally asymptoticallyplske. This result is very important since
the convergence rate of the error variables can be detedrbiynéhe designer. By tuning the gains
of the diagonal matrices appropriately, smoothness in itjiet fbehavior can be achieved. Real
flight implications of this design are significant. Due to faet that small scale helicopters are

very sensitive to control inputs, regulating the convecgerate improves the flight behavior.

8.3.3 Yaw Dynamics

The yaw dynamics are obtained by Equation (8.10) and moicfigaly:

whereVs (©,) has been defined in (7.24). L&t , = ¢, — 1., be the error in the yaw, then the

yaw error dynamics will be:

€Ykt1 = _¢r,k+1 + 4y, + T3 (@k) Wf (8-36)
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The above equation will be shifted forward in time in ordartfee control commands to appear.

This leads to:

€ kt2 = _1,[}7‘7]44,-2 + ¢k+1 + Ts\IIB (@k+1) ka—H

= _¢r,k+2 + wlﬂ-l + Ts‘IIB (@k+1) Uy,

S, 5 C -
= —Yrpp2 + Yo + T (C¢k+1 V2 + C¢k+1 U3,k) (8.37)
O+1 Or+1

An obvious choice for the selection of the valuevgf, which will cancel out the nonlinear terms

and stabilize the yaw error dynamics is:

1
—— U2 + T (¢r,k+2 — P + Me'(l),k+1):| (8-38)

whereM is a diagonal matrix of gains where the absolute value of dajonal entry is smaller
than unity. Applying the above value fog , the yaw error dynamics becomg .. = Mey ;.
which implies the asymptotic convergenceegf, to zero. The control design is summarized by

the following algorithm:

e Initialization: At the initial step, when the algorithm igexuted for first time set.;(0)
equal to a very small quantity close to zero. This will guéearthe existence of the invert-

ible matrix in (8.19).

e Execution at time step: At any given time stef the full state vector is considered avail-
able. To calculate the desired control commands obtaingdebackstepping algorithm the

following steps should be followed.

— Step 1: Calculate
() R, from (8.11).
(ii) v{,, from (8.8).
(i) v, from:

I I
Vppo = Upyy T @1 Rypie300, + azes
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— Step 2: Calculate sequentially the following equations:

I I I
DPiyiyi = Prys T Tsvk+i

fori =0,1,2.

— Step 3: Calculate sequentially the following equations:

1
U(Ii,k+i = T [_ (p£+i - p7I",k+1+i) + Kl (pi-H _pf",k-o-i)]

S

fori =0,1,2,3.

— Step 4: Calculate sequentially the following equations:

1
Zdpi = o {_ (”1€+i - ”gl,k+1+i) + K (”1€+i - ,UCIl,k-H') - ‘)‘263}

fori =0,1,2.
— Step 5: Calculatet), from (8.33).
— Step 6: Calculaté€, from (8.23) andy; ;, 02, from (8.24).
— Step 9: Calculate

(i) ©, from (8.10).

(i) o3, from (8.38).
— Step 10: Calculate. , from (8.17).
— Step 11: Calculate the control commangg ., Ujon,, @aNduy,eq , from (8.19).

— Step 12: Set the following values:

Ucol,k = Mk

oy = G
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8.4 Parameter Estimation Using Recursive Least Squares

An important part of the design before the implementatiothefflight control algorithm is the
parameter estimation of the difference equations (8.89) (&uggestions for online algorithms
[81] are RLS or Gradient Descent methods. In this Chaptearadsrd RLS algorithm is used. The
form of the RLS algorithm can be found in most textbooks exlavith parameter identification
[69]. Lety, be the measurement vector whgrec R™ andd, € RY is the parameters vector

which is going to be estimated. Then, the measurement veatobe modeled as:

Yk+1 = hkék (8.39)

whereh, € RN while the measurement will be considered clear from ndi$e. estimates of
the parameter vector are provided by the iterative exetutidhe following algorithm each time a

new measurement becomes available:

Ko = PohT[ho Pohl 4 Tysen] (8.40)
Pk+1 = [INXN - Kk+1hk]Pk (8-41)
ék+1 - ék —'I_ Kk‘+1|:yk+1 - hkék] (842)

The series of calculations for the above RLS algorithm agatdd by [69] isP, — K., —

P — 9k+1. The initialization of the algorithm is suggested tolRge = aly«xy Wherea is a

very large number and for thy a good initial guess of the parameters or just a zero vector.
For the difference equations (8.8), (8.9) describing thadiational and angular velocities of

the helicopter the above RLS algorithm can be modified inoHewWing way:

I I

v — v
Yorr= | " (8.43)
wch+1 - wf
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hk _ Rke?)ucol,k €3 0 0 (844)

0 0 MwpP) T,

07 =[on a I" 4] (8.45)

wherel', := T'(wonx, Witk Uped ks Ucol 1) 1S @N Matrix belonging t®>** composed only by the
control commands while the vectore R® are the parameters associated with the torque vector in

such a manner that,y = 75.

8.5 Parametric Model

The identification procedure is an iterative process whatjuires back and forth testing be-
tween modeling and verifying [70, 85]. Based on the systeaatgns described in (8.8) and (8.9)
the proposed system dynamics are developed with the duzdtolg of minimal complexity and
satisfactory results. The key feature is to insert the tehashave a dominant effect in the heli-
copter dynamics and at the same time exclude those thatatateror do not effect the identifier.
Those key dynamics are obtained from the helicopter dynag@tion for linear and angular
velocity by substituting the force and torque generatioscdbed in (7.8) and (7.10) respectively.
After working back and forth between the system equatiowsstla@ verification of the experimen-
tal results a simplified parametric model was concluded whis physical rational.

The translation velocity dynamics are straightforward aaslly identified by equation (8.8).
The actual interest and complications is associated wihdéntification of the angular velocity
dynamics. For starters symmetry to the principal axes ismasd. This assumption simplifies
significantly the angular velocity dynamics. Therefdfev?) = diag (qr, pr, pq) andl(Z,T) =
(I I I3). The second simplification assumes that the position \malggrand ET are aligned with
the unitary vectorg,, andk; respectively. Thereforé,?, = [00 z,,]” andh? = [z, 00]".

Then the parameters associated with the control commaadg\en byy = (71 72 73). The
effect of the command controls to the angular velocity dyieans given by the matrix', =

diag (et Wion,ks Uped,)- 10 facilitate the control design the effect of the colleetcontrol com-
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mand is completely disregarded in the angular velocity dyina. It is assumed that the collective
command takes the trim valug,; = mg/Ky;. If u., takes small values, then the inverse matrix
in (8.19) may lead to excessive cyclic and pedal commands.eXperimental results indicate

that this additional simplification assumption does nothasignificant impact neither to the
parametric identification nor to the performance of the m@raigorithm. Then, the parametric

model of the angular velocity dynamics is given by:

D1 = D + iqumi + T Ulat,k
Qi1 = Qe + Lopiri + Y2Ulon,k (8.46)

Tip1 = T + I3qps + V3Uped, k

8.6 Experimental Results

The parameter estimation algorithm and the controllergitesiere tested on tHeaptor 90 SE
model installed inX-Plane The use ofX-Plane provides a good indication of the applicability of
the approach to real flight applications. The lack of any arpkinowledge of the system dynam-

ics, makes it a more realistic validation of the design.

8.6.1 Time History Data and Excitation Inputs

An important part of the parameter estimation procedureris=d in this Chapter, is the col-
lection of the experimental flight test data which are regpliior the identification of the model.
The flight data of the parametric identification proceduregenerated by the execution of special
excitation inputs to the helicopter. Similarly to the fregay identification case, frequency sweeps
were also used for the excitation of the helicopter. Theilgetguidelines of the frequency sweeps
input signals are given in Section 5.7. For each flight reeocdmputerized frequency sweep is

applied to one of the inputs while the rest remain as uncedlas possible from the primary
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input of interest. During the execution of the frequency ewvi is important the the helicopter
does not diverge significantly from the operating point.

Apart from the pedal contral,., the amplitude of the excitations is adjusted in such a manner
that the helicopter will not drift away significantly fromethover trimmed operation. Since the
Raptormodel installed inX-Plane does not include a yaw damper or a gyro, the behavior of the
helicopter’'s heading was much more sensitive than the ocmuated in actual small scale heli-
copters. The design of the excitation signal was much maablertging than the rest of the con-
trols since for the long period of the sweep the yaw velocitréases significantly. The excitation
signal applied was based on the frequency sweeps and atghming of each sinusoidal waiving
the amplitude was determined to preserve the yaw velociiydmn some bounds.

The individual flight records produced by the implementatid the frequency sweeps are
concatenated to a single record. The concatenated recprddsssed by the RLS algorithm for
the estimation of the helicopter’s model parameters. Theptiag rate for the collection of the

flight data was set t60 H z.

8.6.2 Validation

In order to validate the model the actual helicopter is sébt@er mode and doublets (sym-
metrical pulses) are applied by the control commands. Aféeh doublet the helicopter returns to
the hovering mode until another excitation occurs. Thosgatons take place for all the control
inputs.

The comparison between the actual and estimated tramslhiod rotational velocities can be
seen in Figure 8.2 and Figure 8.3, respectively. Based odatait can be seen that the model also
provides sufficient estimates for large variations in thedir velocities. The identified parameters
are shown in Table 8.1. The verification results illustr&ie predictive capability of the identified
model for the horizon of one time step. Each estimated pnoifigure 8.2 and Figure 8.3 is gener-
ated by substituting the actual value of the helicopteBsesand input to the right hand side of the

difference equations (8.8) and (8.9).
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8.6.3 Control Design

All of the control commands were saturated in order to liehiinterval[—1 1] sinceX-Plane does
not accept values out of this scope. However, (8.19) regtinatu,.,; # 0 for every time step.
Therefore, for the execution of the control algorithm a deriimear transformation modified the
values of the collective command such thay; € (0 1]. For the presentation of the controller
results the collective signal was again reverted to thevate—1 1]. The modeling simplification
involving the matrixI" resulted in the equality. = (w4t Uion uped)T. Instead of the pedal con-
trol input described by (8.17) and (8.38) a more simple POrodler with bias was applied with

sufficient results. The proposed pedal control command wsed
uPed7k — —O.5€w7k - 008wz7k - 018 (847)

A second modification that took place was the change of thdifted valuesy;, v-. The back-
stepping algorithm is design based on the assumption ofgteihowledge of the helicopter dy-
namics. However, although the identification results welegaate there is still some uncertainty
associated with the models parameters especially withrtgelar velocity dynamics described by
(8.9). In cases of parameter uncertainty exact dynamiosediation is not a good practice. Since
the inverse of those values is required for the calculaticdhecorresponding control command,
the smaller the value the higher the control command willTwethis extent those values were
modified to regulate the cyclic control commands to achibeediesired tracking performance.
The parameters were significantly increased with the neuegabeingy; = 20, v, = 10.

In general, the time domain parametric identification wawen to be significantly less effec-
tive than the frequency domain identification procedurediesd in Chapter 5. The main diffi-
culty of the RLS algorithm was encountered in the estimatibtihe parameters associated with
the angular velocity dynamics. Although the verificatiosuiés were satisfactory, the estimated

parameters exhibit increased insensitivity of the angugéwcity with respect to the control inputs.
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Table 8.1: Identified system parameters.

aq fo%) I I I3 1 V2 73

-0.4857| 0.0944| 0.0256| 0.0046| 0.0452| 0.7854| 0.4994| 0.1784

Table 8.2: Values of the diagonal gain matrices.

K; || 0.92] 0.92| 0.93
Ky || 093] 0.93| 0.94
Ay 0 0 0

As || 0.9 || 0.9 || 0.95

The poor performance of the time domain identification casigeificantly improved if simple
non parametric models of the frequency domain are used &stocs.

The reference maneuver is a trapezoidal velocity profilbénateral and longitudinal di-
rections identical to the one described in Section 6.7. Udginout the maneuver the reference
heading remains constant with the valiie = 0. The gains of the diagonal matrices used for
the backstepping controller can be seen in Table 8.2. Thertgrof the controller gains is a very
straightforward process. The convergent rate for each state variable in (8.34) should be faster
from the convergent rate of error variables that lie in higbeels of the system. This requirement
reflects the natural time scaling between the helicopteanycs. The translational dynamics
are significantly slower than the attitude dynamics. The&bpter velocity responses versus the
reference trajectory are illustrated in Figure 8.4. TheeEahgles of the helicopter are depicted in
Figure 8.5. The position of the helicopter in the inertiabiinates is given in Figure 8.6. Finally
the control inputs are shown in Figure 8.7. The performari¢keononlinear controller was excel-
lent. The change in the values-gf, 7, parameters resolved the shortcomings of the time domain

parameter estimation and resulted to a controller desidnigbftracking performance.
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8.7 Remarks

This Chapter has presented a time domain parameter esimsafheme and a nonlinear dis-
crete time control algorithm for helicopters. A simple RU§aithm is used for the parameter
estimation procedure. The excitation signals, used toym®dthe identification data, were fre-
guency sweeps for each of the control commands. The secskdftthe Chapter is the design
of a nonlinear controller based on the discrete time diffeeeequations of the helicopter. Due to
the cascade form of the system a discrete time backsteppétigoohis proposed. The main con-
tribution of this design is the fact that the convergence ddithe cascade system’s state variables
to their desired values, can be determined by the designenifig those gains appropriately, re-
sults in significant improvement of the flight behavior. Thewae control design considers perfect
knowledge of the helicopter dynamics. However as illustitdiy the identification results there is
a parametric error associated with the angular velocityadyins. TheX-Plane simulator is itself
a source of uncertainty due to small fluctuation in the samypiate. The experimental results have
illustrated that even in that case the controller is robnsugh to deal with both the endogenous
and exogenous uncertainty.

The goal of the next Chapter is the development of an imprtineel domain system iden-
tification method. The discrete helicopter dynamics areasgnted by a Takagi-Sugeno fuzzy
model. Instead of using a single nonlinear model for theesgmtation of the helicopter dynamics,
the Takagi-Sugeno fuzzy system is an interpolator of meltiwnlinear models which depend
on the helicopter’s operating condition. The parameteth®fTakagi-Sugeno fuzzy system are
estimated by the simple RLS algorithm described in this @rap he identification results of the
fuzzy system indicated significant improvement relativéheparameter estimation approach of

this Chapter.
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Chapter 9: Time Domain System Identification for Small ScaldUnmanned Helicopters

Using Fuzzy Models

The objective of this Chapter is to present a system ideatifin method suitable for heli-
copter. The proposed model to be identified is a Takagi-Sufierzy system, representing the
translational and rotational velocity dynamics of the ¢mbiter. For the parameter estimation of
the Takagi-Sugeno system a classical RLS algorithm is wslgidh allows the identification to
take place on-line since parameter updates are producetewdiea new measurement becomes

available. The validity of this approach is tested usiiglane

9.1 Introduction

The objective of this Chapter is to examine a standard tgcienof fuzzy system identification
and its applicability to helicopters. The Chapter illuttsaa time domain identification approach
that can be implemented on-line in the sense that estimatebeemade each time a new state
measurement is available. Results illustrate that thitatkis successful of producing a nonlinear
discrete model of relatively low complexity and high acayral he resulting model is suitable for
the design of model based nonlinear fuzzy controllers.

More specifically, a Takagi-Sugeno fuzzy system is develd@esed on the discretized dy-
namics of translational and angular velocity derived in @ba8. After the development of the
Takagi-Sugeno system, a standard RLS algorithm is usediioats its parameters. The resulting
fuzzy system is an interpolator of nonlinear discrete systehich depends on the helicopter’s

flight condition.

193

www.manaraa.com



9.2 Takagi-Sugeno Fuzzy Models

This Section illustrates how RLS can be used to identify taemeters of a Takagi-Sugeno
fuzzy model [101] used to represent the discrete dynamiessaigle state model. This approach
will be modified to identify the complete rotorcraft dynamid he identification of the Takagi-
Sugeno system proposed in this paper is based on the metbadbeel in [81].

The Takagi-Sugeno fuzzy systems are characterized astidnatfuzzy systems" [81] since
their output is a function rather than a membership funatiemter. The fuzzy system is a static
nonlinear mapping between the inputs and the outputs agcatieecomposed by R rules of the
form If-Then. It will be illustrated how the Takagi-Sugeno system can seduto adjust its param-
eters in order to provide the best estimaté + 1) of the statey(k) given the inputs to the fuzzy
system(zy, xo,...,x,) € R”, the state vectoY (k) = [y(k),y(k — 1),...,y(k —m)] € R™ and
the inputs of the plant/ (k) = [u1(k), u2(k), ..., u,(k)] € RP. Following similar notation of [96]

thei'” rule of the rule base can be written as:

If (F, andF and ...and" ) Then
Gi(k+1) = ;1 A1 (Y (k),U(K)) + -+ + i, aDa(Y (k), U(k))

whereg;(k + 1) is the the estimate of(k + 1) given by thei’” rule. Moreover,F? is a fuzzy set
defined as:

Fb .= {a,ppp(a) :a € Randups(a) € [0 1]} 9.1)

As mentioned in [81, 96] the membership functi@pg(a) describes the certainty that the value of
a represented by the linguistic varialileean be described by the linguistic valﬁé. The mem-
bership functions considered in this paper are belled sh&agissians with or without a saturation
portion. Their form can be seen in Table 9.1. The functidn$Y (), U(k)) : R™*? — R with

s = 1,2,...,d are used to indicate that the parameter identification carsed for nonlinear
dynamic systems which are linear in the parameters. Thesinée mechanism used to calculate

the premise of each rule for this paper will be the dot prodiiberefore, the membership function
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representing the premise of the aba¥erule will be:

Hi(@1, @2, ) = By (@1)prg (22) - ppt (20) (9.2)

After-center average defuzzification the estimated outpthie identifier will be:

Zil Qz(k + 1)#1‘

gk +1) = (9.3)
Zfil Mg
wherey; denotes the premise df rule p; (1, 2o, . .., x,,) for convenience. Let:
Hi
&= (9.4)
Zf;l i
and:
€M(k) = [Ar(k)&r - Ar (k)R -~ Aa(k)Er - - Aa(k)ER] (9.5)
07 =Jon1 - ag1- g ARl (9.6)

where¢(k) andd are vectors oR?¢, From the above the estimated state can be written as:

Gk +1) =L (k)0 (9.7)

The identification of the parameter vectbtakes place with the RLS algorithm described in Sec-

tion 8.4. The estimates of the parameter vector using RLprareded by the following algo-

rithm:

K(k+1) = P(k)§(R)ET (k) P(k)E(k) + 1] (9.8)
P(k+1) = [Igrxar — K(k+ 1)€" (k)| P(k) (9.9)
Ok +1) = 0(k) + K(k+ D[y(k + 1) — €7 (k)0(k)] (9.10)
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Table 9.1: Gaussian membership functions.

1 if 2 < ¢
Left ‘(o) =
© () exp (—% (””_fl>2) otherwise
Centers|| pu(z) = exp <—% (%)2)

R- ht ; 1 If X Z c”
o} p(x) = exp (_% (z;;ff) otherwise

The series of calculations for the above RLS algorithm agatdd by [69] isP, — K., —
P, — ém. The initialization of the algorithm is suggested toBg)) = aljrxqr Wherea is a
very large number and for thﬁ{o) a good initial guess of the parameters or just a zero vector.
At this point it should be mentioned that the inputs to thefugystem(z, 5, . .., x,) could
be a subset of the state vector. In general the choice of phedro the fuzzy system should be

descriptive values of the operational condition of theeysto be identified.

9.3 Proposed Takagi-Sugeno System for Helicopters

As previously stated, the main objective of this paper islamtify a Takagi-Sugeno fuzzy
system that best describes the discrete dynamic behavibe aictual helicopter. Based on the
system equations presented in (8.8) and (8.9) a Takagir®ugyestem will be developed with the
dual objective of minimal complexity and satisfactory desuThe Takagi-Suegno model is based
on the simplification assumptions of Section 8.5.

As indicated by (8.8) the velocity dynamics depend on thertation of the helicopter and
the force vector. The proposed Takagi-Sugeno system eagieg the translational dynamics will

have as input the translational velocity vecté(k). Let the system be composed By fuzzy

rules then the'" will be:
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If (F7, andF" andF*,) Then
T y z

oL (k +1); = vL(k) + a} [sin ¢ (k) sin (k) + cos (k) sin O (k) cos (k)] teor (k)
by (k+1); = vj (k) + af [sin (k) cos (k) — cos p(k) sin 0(k) sin (k)] ueor (k) (9.11)

ol (k +1); = vl (k) + a} [cos ¢ (k) cos O(k)] ueo (k) + ab

whereFZi, F;Z andF;g are fuzzy sets representing the linguistic values of thguiistic variables
vy, U, andv;. For the angular velocities, let's assume that the fuzzyesyss composed by,

rules with thei’” rule being:

If (Fy andFy andFy) Then

p(k+1); = p(k) + biq(k)r(k) + viwa (k) teo (k)
q(k+1); = q(k) + bsp(k)rs(k) + viuion (k)ueo (k) (9.12)

r(k+1); = (k) + biq(k)p(k) + viupea(k)

whereFy, FJ andFf are fuzzy sets representing the linguistic values of thguiistic variables
p, ¢ and7 respectively. The parameters of the fuzzy system are unkndve RLS algorithm can
be used so the above equation in order to provide an estirhtite dakagi-Sugeno parameters at

each time step that a new measurement is available.

9.4 Experimental Results

Similar to Chapter 8, the validation of the model took plametheRaptor 90 SEn the X-
Plane simulator. The sampling rate was sebtif z. For the collection of the identification data

the same excitation inputs were used with the ones desdrifgection 8.6.1.
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Table 9.2: Gaussian centers and spreads.
out Linguistic Left Centers Right
Variables | ¢ | o c o | oo”
0L -0.5| 0.01 0 1 0.5 | 0.01
0! 0y, -1 | 0.03 0 0.03
0L -1 | 0.3 0 0.3 0.3
q -1.5] 0.01 0 15| 0.01
q T -4 | 0.01 0 4 |0.01
D -0.5 1 * * 0.5 1
q * * * * * *
7 T -0.5| 0.01 0 8 0.5 | 0.01
D -1.5] 0.03 0 6 15| 0.03
q -2 | 0.03 0 6 2 |0.03
D T -0.5| 0.01 0 8 0.5 | 0.01
D * * * * * *

Table 9.3: Mean error of the Takagi-Sugeno RLS in comparigitim RLS identification over the
verification data.

State Mean error Improvement
Estimate Fuzzy RLS
RLS
ol m/sec 0.0456 0.0457 0.2%
v, m/sec 0.0049 0.0052 5.7%
oL m/sec 0.0253 0.0255 0.7%
g deg/sec 1.0432 1.2050 13.4%
7 deg/sec 2.2671 4.0852 43.7%
p deg/sec 1.5554 1.8629 16.5%
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9.4.1 Tuning of the Membership Functions Parameters

The centers and the spreads of the Gaussian membershiphsnaet the rotorcraft’s Takagi-
Sugenano fuzzy system, described by (9.11)-(9.12), aengivTable 9.2. Théx) symbol in-
dicates that the specific linguistic variable does not pidie in the rule base. The choice of
these parameters has been based on intuitive criteriar tatiiean optimizing method over the
training set. The main idea is that the linguistic valuesesponding to hover operation should
have a wide spread in order to dominate over the linguisti@lbes that correspond to other flight
operations. The left and right membership functions are asesupportive means to describe
the behavior of the system when the rotorcraft operatesdeutise bounds of the hover mode.
Instead of this intuitive approach there are many optingizitethods to determine the membership
function parameters over the training set. A gradient dedcming method for determining the
membership function parameters, is given in [81], howevadignt descent should be used to tune
the fuzzy model parameters as well. More advance methodgftating the rule base and the

parameters of the fuzzy system, by supervised and unsspdrigarning, is presented in [1].

9.4.2 Validation

In order to validate the model, thiaptor 90 SEs set to hover mode. The applied control
commands are periodically perturbing the rotorcraft to\a hever state until a new excitation
occurs. Those excitations take place for all the contraliigp

The comparison between the actual and estimated tramslddaod rotational velocities is
shown in Figure 9.1 and Figure 9.2 correspondingly. The neeaor over the identification data
is illustrated in Table 9.3. The same Table presents the mieanof the RLS identification pro-
cedure using the straight forward model of (8.8), (8.9)dadtof a Takagi-Sugeno fuzzy model.
The fuzzy model has a significant improvement in the angwéwoity dynamics, which are the

biggest identification challenge. The verification resstisw the success of the approach since the
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Figure 9.1: Comparison between the actual (solid line) atidhated (dotted line) linear velocities

using the verification data.

associated error are small and bounded even in the casehoéXigations. Based on the data it

can be seen that the model also provides sufficient estirf@atége variations in the velocities.
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Chapter 10: Comparison Studies

This Chapter provides an extensive evaluation and congradsthe controller designs that
have been introduced in this research. Evaluation of thitftigntrol systems takes is a function
the execution of several flight maneuvers that aim to testdinéroller designs in terms of stability
and tracking accuracy. The test maneuvers are produceddrgmee position (or velocity) and
yaw reference trajectories. The reference trajectoriesjecially designed in order to examine
the performance of the controller designs in multiple ofiegaconditions that cover a wide por-
tion of the flight envelope. Some of the reference trajeetodre particularly aggressive investi-
gating the physical limitations of the helicopter. The colérs where tested for tHeaptor 90 SE
RC helicopter which operates in tiePlandlight simulator environment. Details regarding the

experimental platform to which the experiments where catethare given in in Section 5.10.1.

10.1 Summary of the Controller Designs

The comparison study involves the evaluation of three olletrdesigns that have been inves-
tigated throughout this dissertation. This Section presid brief summary of these designs. Two
of the designs are presented in Chapter 6. The third coeitrislidescribed in Chapter 8.

The first design is a tracking controller based on the lizearihelicopter dynamics. The con-
trol law is separated into two static feedback loops. Theireesponsible for the regulation of
the longitudinal/lateral dynamics and the second is resiptanfor the regulation of the yaw/heave
motion. The controller design is based on the structure @frametric linear model proposed in
[70]. The parametric linear model is given in (6.2) and représ the helicopter dynamics at hover.

The controller is additionally enhanced with the integrfahe position error. The inclusion of the
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integrator dynamics achieves the attenuation of steadly steors due to parametric and modeling
uncertainty. Thdraptor 90 SHinear model identified parameters are given in Table 5.4 Jdin
values for the two feedback loops of the control law are ginefable 6.1.

The second controller design is based on four independ&® $edback loops. The control
law completely disregards the cross coupling between theopter dynamics and assigns a PID
controller in each input of the helicopter. The main advgetaf this approach is its simplicity
since the particular design does not require any knowleélgeedhelicopter model and the feed-
back gains can be empirically tuned. The gains for each PéBifack loop are given in Table 6.2.

The third design is a discrete time nonlinear backsteppamgroller. The flight control system
is based on the nonlinear helicopter model composed a fadirgietion of the equations of motion.
The attitude dynamics and the collective command are usettopulate the orientation and the
magnitude of the thrust vector that is responsible for threeggtion of the helicopter propulsive
forces. The values of the Raptor’s nonlinear model paramet® given in Table 8.1. The con-

troller gains are given in Table 8.2.

10.2 Experimental Results

The performance of the controllers in terms of tracking aacyand dexterity is examined
by the execution of four different maneuvers. Two of the maees involve velocity tracking
while the rest of them require position tracking. Most of thaneuvers require aggressive flight
operation which is translated by increased attitude arajieghrust magnitude. The maneuvers
are specially designed such that the helicopter transitiomultiple operating flight modes. The
execution of the maneuvers forces the helicopter to coveda area of the flight envelope and in

some cases to reach its physical limits.
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10.3 First Maneuver: Forward Flight

The first maneuver under investigation requires the crgisirthe helicopter by tracking a
simple forward flight routine. The reference trajectory tsagpezoidal velocity profile. The head-
ing of the helicopter remains constant throughout the ei@twof the maneuver with),, = 0. The
forward flight maneuver is composed by five parts. In the fiast fhe helicopter is set to hover
by lifting vertically from its starting point from the grodn In the second part of the maneuver,
the helicopter accelerates forward. After reaching a extalocity the helicopter is cruising
with constant speed. In the fourth part of the maneuver thedpter decelerates until its velocity

reaches zero. Then, is set to hover again. The referenceitygboofile is given by:

v(t) =0 fort <18
I (T g
oty = (0 0 225111(%@—18)) for 18 < ¢ < 33
vl (t) = 22 for33 <t <48
T
vi(t) = (0 0 22sin(I—O(t—48))> for 48 < 68
vi(t) =0 fort > 68

The reference velocity and the response of helicopter itgloesponse produced by the three
controllers is depicted in Figure 10.1. The pitch, roll aravwangles acquired during the execution
of the maneuvers for the three designs are depicted in Figug The control inputs generated
by the flight control systems are shown in Figure 10.3. Théiposand the orientation of the
helicopter during the execution of the maneuvers is showsigare 10.4.

During the execution of the maneuver the helicopter reaatreaximum velocity 022 m/sec.
Based on extreme flight tests, the maximum possible forwalatity that the Raptor can reach is
25m/sec. This is the pick velocity that the RC model can acquire duta¢opower limitations of

the main rotor. From Figure 10.2 it is apparent that the fodwelocity and acceleration of the
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helicopter is manipulated by the pitch angleAll the controller designs successfully tracked the

reference velocity trajectory.

10.4 Second Maneuver: Aggressive Forward Flight

The second maneuver is an aggressive version of the premimusThe flight task involves
a similar forward flight profile, however, in this case theitmbter is expected to acquire higher
acceleration. Thus, the helicopter should reach its maximelocity in a shorter time interval.
Since the longitudinal/lateral acceleration of the hglieo has been proven to be proportional to
the pitch/roll angles, a higher tilting of the fuselage ipested during the execution. The interest
of this maneuver focus on the acceleration phase. Againgteeence heading remains constant

with ). = 0. The reference velocity trajectory profile is given by:

vi(t) =0 fort <18
T
I : ™
i(t) = (0 0 2251n(ﬁ(t—18))> for 18 < ¢ < 25
vi(t) = 22 for 25 < ¢ <40
T T
vl(t) = (o 0 22sin(E(t—4O))> for 40 < 60
vi(t) =0 for ¢ > 60

The reference velocity trajectory and the velocity resparisthe three designs is depicted in
Figure 10.5. The pitch, roll and yaw angles during the exeoutf the maneuver are illustrated
in Figure 10.6. The generated control inputs for the threstgths are shown in Figure 10.7. The
position and orientation of the helicopter to the Cartesjaace is shown in Figure 10.8.

Figure 10.6 indicates that due to the aggressive accealarafithe helicopter the pitch angle
takes a significantly higher value compared to the previase study. For the nonlinear back-
stepping design the pitch angle may reach a value of Gptoln addition, during the acceler-

ation phase, the collective commang, is saturated to its maximum value. The simultaneous
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tilting of the fuselage and the increase to the thrust mageiproduce the propulsive force that
is necessary for the aggressive portion of the maneuvem Eve three designs, the PID and the
nonlinear controller exhibit higher pitch angles compauethe linear design. During this phase,
since the helicopter is already operating with its maximwailable thrust power, the high tilt of
the fuselage decreases the vertical component of the treasir. The decrease of the thrust’s
vertical component makes the weight of the helicopter thraidant force in the vertical direc-
tion. This fact results to the diving motion of the helicapiéhich is apparent in Figure 10.8(b)
and Figure 10.8(c). Specially in the case of the PID cordrpthe helicopter almost touches the
ground. The diving motion, continuous until the helicopgecumulates sufficient momentum

in the longitudinal direction, and the absolute value ofghieh angle is decreased. This effect
is purely related with the gain selection of the controllénsthe PID and nonlinear design the
gain choice impose significantly faster convergence todhgitudinal/lateral motion compared to
the heave dynamics. Therefore the controllers prioritiesé dynamics over the vertical motion.
The diving motion would be negligible in the ideal case tlhat ¢ontroller had unlimited power
resources and the magnitude of the thrust force could cosaperny decrease to the vertical

component of the main rotor thrust caused by the tilting efftiselage.

10.5 Third Maneuver: 8 Shaped

For the third maneuver the helicopter is required to exeant&8 shaped” curved path. The
heading of the helicopter remains constant throughoutxteewtion of the maneuver. This maneu-
ver is a position tracking challenge. The maneuver is comghby three parts. In the first phase
the helicopter lifts vertically from the starting point aids set to hover mode. In the second part
of the maneuver the helicopter is expected to curve an “8exligmth in the longitudinal and
lateral direction while its altitude remains constant. i#é¢ &nd of the path the helicopter is set to

hover again. The reference position trajectory is given by:

pi(t)=<0 0 —5)T fort < 15
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20 [1 - cos(%(t - 15))}

pr(t) = —14sin<17r—0(t — 15)) for 15 < ¢ < 55
-5
T

pr(t) = (0 0 — 5) fort > 55

The reference position trajectory versus the positionaeses of the three controllers are
illustrated in Figure 10.9. The orientation angles of thiclheter during the execution of the
maneuvers for the three controllers designs are depictEdyure 10.10. The control inputs for
the three designs are shown in Figure 10.11.

The tracking performance of the controller designs wasfsatiory. All of the controllers
accurately succeed the tracking task of this more invohamdinate motion. In general, tracking
controllers require that the reference trajectories areo$im(the reference functions and their
higher derivatives are continuous). A close inspectior¢ogarticular continuous trajectory in-
dicates that its first derivative is a piecewise continuaunfion. The points of discontinuity are
located in the end and the start points of the 8 shaped cua@ian when the helicopter initiates
and finalizes to hover. The discontinuities in the first deiixe of the reference trajectory results
in instantaneous transient jumps in the control inputs.voidathese transients it is preferable to
use differentiable functions as references. If the geiweratf such trajectories is not practical or
limiting and such transients are hazardous for the operatiohe helicopter, it is suggested that
the reference trajectories are processed by an approfovaigass filter that attenuates the the

high frequency components of the signal.

10.6 Fourth Maneuver: Pirouette

The final maneuver under investigation is the most challengince it involves the simultane-
ous and synchronized helicopter motion in all directionghefconfiguration space. Similarly with

the previous trajectories the helicopter is initially sehbver. In the main part of the maneuver,
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the helicopter is required to execute a circular motion altdmgitudinal and lateral directions.
During the execution of the circular motion the helicoptesimultaneously ascending vertically
with exponentially decreasing velocity. This results tgaiad motion of the helicopter around a
fictional cylinder. At the execution of the fifth spiral a cection maneuver sets the helicopter at

the sender of the cylinder. The reference trajectory isrgiwe

plt)y=0 0 —3)7 fort <15
5 [1 —cos(Z(t - 15))]
py(t) = _5Sm<%(t _ 15)) for15 < ¢ < 65

—23+ 206_0'06(t_15)

2.5 [1 - cos(g(t - 65))

p,{(t) = —2.58111(%((*, _ 65)) for65 <t <70
—23 +20e 3
plt)=(0 0 —22.0043)" fort > 70

The reference trajectory and the helicopter position nespe for the three controller designs are
illustrated in Figure 10.13. The orientation angles ardateg in Figure 10.14. The control inputs
generated by the controllers are depicted in Figure 10.it&llf the position and orientation
of the helicopter for each controller design during the exea of the maneuver is illustrated in
Figure 10.16.

The last maneuver was possibly the most challenging. Itédaive aggressive trajectory
since in certain time instances the roll angle of the hetieopeaches a value close@0°. Obvi-

ously, the performance of all the controllers is satisfaceven for this demanding maneuver.
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10.7 Remarks

The extensive comparison and flight testing presented snGhapter, provides some very use-
ful observations related with the proposed designs andalieopter control problem in general.
All the controller designs which were under investigatiorihis comparative study, exhibit robust-
ness and high accuracy tracking capabilities even foreatsr trajectories that expect compaosite
and aggressive helicopter motion.

The first remark is associated with the linear controlleligiesTheoretically, the identified
linear model of thdRaptor 90 SEprovides a quasi-steady dynamic description which is &ohib
mild flight operation (hover, cruising with low speed). Hoxge the executed maneuvers required
the operation of the helicopter in several operating comt In certain cases the reference trajec-
tories imposed the operation of the helicopter in aggresand high agile maneuvers that required
attitude angles of up t60°. In such operations even the linearity assumptions of theefrare
violated. A single controller, based only on the identifiedér model was adequate.

The success of the linear design is attributed to three kasackeristics. The frequency do-
main identification method produces models of high fidelitd accuracy. The procedure itself,
provides significant understanding of the helicopter dyicanThis insight is evaluated and ex-
ploited by the controller design. Furthermore, althougtotietically, the model is limited only to a
neighborhood of a certain operating condition, in realityovers a relative wide area of the flight
envelope. The second characteristic is the decomposifitire@ontroller design to two feedback
laws, each of them responsible for a different subsystereshelicopter dynamics. This idea
passes the physical flight intuition to the mathematicakbtigyment of the controller.

A second remark worth mentioning, is the performance of filedesign. A similar com-
ment about this issue has been already made in Section @&s kxpected that the PID perfor-
mance would be significantly inferior compared to the resigtes. However, the flight results
indicate that the PID controller exhibits satisfactory éabr. The success of the PID controller is
attributed to the attenuated cross coupling effect amadhgdRaptor dynamics. This fact is sup-

ported by the off-axis responses of the helicopter illusttan Figure 5.3. This Figure illustrates
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that the magnitude of the/u;,; andp/w;,, responses lie in the zone ef20 to —40 dB. This is
an indicator of negligible cross coupling between the loglier dynamics.

Finally, the most interesting remark is the following obsgion: The motion and control
responses of all the controller designs are similar givanttie tracking objective is achieved.
This fact indicates that during the execution of a referene@euver the helicopter motion and
nominal inputs are constrained. The constrained motioemigpon the reference trajectory itself.
For any method that achieves asymptotic convergence oflimpter outputs to their reference
values, after the occurrence of some initial transientshtilicopter state and control inputs will
asymptotically reach a manifold, which is dictated by thectional controllability of the system
equations [66]. The simplest approximate description isfitmanifold is given by the desired state
vectorz, presented in Section 6.2. For example, based on (6.30) giedeitch and roll angles
are given by:

1 1

Og = — [ty — Xyuy] ¢a = — [0p — Yoyur]
—g g

The above equation indicates that the pitch and roll andlasteady-state condition are propor-
tional to the reference lateral/longitudinal acceleratimd velocity of the helicopter. Any discon-
tinuities to the reference velocity and acceleration vplbear to the attitude angles as well. The
ability of the approximated linear model to provide the diggion of this steady-state manifold is
attributed to the differential flatness property [47]. Tm®Wwledge of this steady-state vector can
be exploited in the development of trajectory generatoos.ifstance, from the above equation,
the designer will know what attitude angles are expectethduhe execution of a predefined

reference velocity profile.
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Figure 10.1:First maneuver (Forward flight)Reference velocity trajectory (green dashed line)
and actual velocity trajectory of the linear (solid bluegnPID (red dashed dotted line), nonlinear
(dashed dotted black line) controller designs, expressatkrtial coordinates with respect to time.
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Figure 10.2:First maneuver (Forward flight)Orientation angles of the linear (solid blue line),
PID (dashed red line) and nonlinear (dashed dotted blaek diantrollers designs.
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Figure 10.3:First maneuver (Forward flight)Control inputs of the linear (solid blue line), PID
(dashed red line) and nonlinear (dashed dotted black loyaller designs.
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Figure 10.4:First maneuver (Forward flight)Reference position trajectory (solid line) and actual
trajectory of the controller designs (dashed line) witlpezs to the inertial axis.
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Figure 10.5:Second maneuver (Aggressive forward fligRgference velocity trajectory (green
dashed line) and actual velocity trajectory of the lineati¢sblue line), PID (red dashed dotted
line), nonlinear (dashed dotted black line) controllerigles, expressed in inertial coordinates with
respect to time.
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Figure 10.6:Second maneuver (Aggressive forward fligijientation angles of the linear (solid
blue line), PID (dashed red line) and nonlinear (dashededditack line) controllers designs.
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Figure 10.8:Second maneuver (Aggressive forward fligR&ference position trajectory (solid
line) and actual trajectory of the controller designs (@aklne) with respect to the inertial axis.
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Figure 10.9:Third maneuver (8 shapedReference position trajectory (green dashed line) and
actual position trajectory of the linear (solid blue linB)D (red dashed dotted line), nonlinear
(dashed dotted black line) controller designs, expressatkrtial coordinates with respect to time.

0 (rad)

=) -
S 0 b
~ g
=
-2 I I I I I I
0 10 20 30 40 50 60 70
2
=)
o
>

0 10 20 30 40 50 60 70
time (sec)

Figure 10.10:Third maneuver (8 shapedprientation angles of the linear (solid blue line), PID
(dashed red line) and nonlinear (dashed dotted black lmayallers designs.
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Figure 10.11:Third maneuver (8 shapedontrol inputs of the linear (solid blue line), PID
(dashed red line) and nonlinear (dashed dotted black lmayaller designs.
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Figure 10.12:Third maneuver (8 shapedRReference position trajectory (solid line) and actual
trajectory of the controller designs (dashed line) witlpezs to the inertial axis.
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Figure 10.13Fourth maneuver (PirouetteReference position trajectory (green dashed line) and
actual position trajectory of the linear (solid blue linB)D (red dashed dotted line), nonlinear
(dashed dotted black line) controller designs, expressatkrtial coordinates with respect to time.
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Figure 10.14Fourth maneuver (PirouettelOrientation angles of the linear (solid blue line), PID
(dashed red line) and nonlinear (dashed dotted black |lmatyallers designs.
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Figure 10.16Fourth maneuver (PirouetteReference position trajectory (solid line) and actual

trajectory of the controller designs (dashed line) witlpezs to the inertial axis.
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Chapter 11: Conclusions and Future Work

Helicopters are highly nonlinear systems with significayriaimic coupling. In general, they
are considered to be much more unstable than fixed wing #irditae goal of this dissertation has
been to examine the design problem of autonomous flight @lterts for small scale helicopters.

Modern control techniques are model based, in the sensththabntroller architecture de-
pends on the dynamic description of the system to be coattollhis principle applies to heli-
copter as well, therefore, the flight control problem is tigltonnected with the helicopter model-
ing challenge.

The helicopter dynamics can be represented by both linehnanlinear models of ordinary
differential equations. The model description should a&igly predict the helicopter response for
any given input. The order and the structure of each modeaistufated based on standard laws
of physics and aerodynamics accompanied by certain sicgilifih assumptions that reduce as
much as possible the complexity of the description. Therpatac models should encapsulate
the dynamic behavior of a large family of small scale helteoq Linearized helicopter models
have a limited range of validity which is limited to a flight@nation in the vicinity of a certain
operating point. On the other hand, nonlinear model proaidelative global description of the
flight envelope. It is important that the mathematical magl@lccurate yet manageable enough for
the design of a control system.

In this research the linear and nonlinear models structudeoeder are adopted by widely
acknowledged works in the area of the helicopter controlidedtification. The linear model is
adopted by [70] and it consists of a coupled system of thebwlier motion variables and the

main rotor flapping dynamics. In the case of the nonlinearasgmtation structure, this work

223

www.manaraa.com



adopts the model proposed in [47]. This model consists ofiieopter nonlinear dynamic equa-
tions of motion enhanced by a simplified model of force anduergeneration.

Based on the above parametric model representations, thisimiroduces several controller
designs. The objective of each flight control system is ferhillicopter to track a predefined
position (or velocity) and yaw reference trajectories. th#é proposed controller designs neglect
the coupling between the helicopter forces and momentsaricplar, we disregard the produced
forces from the main rotor flapping motion and the tail rotottie longitudinal and lateral direc-
tions of the body-fixed frame. This is a typical assumpticat takes place in most controllers for
helicopter that exist in the literature. These parasiticés have a minimal effect on the transla-
tional dynamics compared to the to the propulsive forcedyred by the attitude change of the
helicopter. Therefore, this assumption has physical seksedicated in [47] the approximate
model is feedback linearizable and, therefore, in feedli@ck. In this work, both linear and
nonlinear proposed controllers use concepts from the bempimg recursive design methodology
which is suitable for systems of this form.

After establishing a mathematical control framework basee generic parametric helicopter
model, the final step for the implementation of the contralieghe extraction of the numeric val-
ues of the model parameters. The model parameters shoultbbercsuch that the predicted
responses of the model match the actual flight data of thedmér. The process of extracting
the numeric values of the model parameters based on expesahfiight data lie in the field of
system identification. The system identification procedame further classified to frequency
domain and time domain. The frequency domain identificasanuch more superior in terms of
calculation complexity and accuracy compared to the tinmaalo approaches. However, the main
disadvantage of the frequency domain identification isitiatrestricted only to linear models.

At this point we need to make clear that the main focus of tluskvies in the theoretical
development of the flight controllers. Each derived cotdrdk attached with the most suitable
system identification approach in order to experimentadljdate the applicability of the design.

In a real-life application the theoretical control frametwis worthless if the helicopter model
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parameters are unavailable. The examination of sevenatifidation schemes indicate which are

the most suitable practices for the extraction of the hplieoparameters.

11.1 Summary of Contributions

A summary of the main contributions presented in this work is

e A multivariable tracking controller based on the linearn¢mbter dynamics. The proposed
proposed design has significant advantages relative totbnal model and integral control
approach. The main contribution of this design is its aptlit pass the intuitive notion of
helicopter manned piloting to the mathematical develogroéthe autonomous controller.
This is achieved by separating the helicopter dynamicstimtointerconnected subsystems
representing the longitudinal/lateral and yaw/heave omptiespectively. By disregarding
the effect of the forces produced by the flapping motion ofntizén rotor, the approximated
subsystems are in feedback form and, therefore, diffedgnflat. Due to the differential
flatness of the system dynamics, a desired state state annccenp be determined, com-
posed by the components of the reference output and théiehdgrivatives. The desired
state can be easily and systematically determined by tHestegaping approach. When the
helicopter state is regulated to this desired state, tlokitrg error tends asymptotically to
zero. Similarly to [47], the desired state vector can be digsethe design of meaningful
trajectories. The overall control law is a superpositioithef desired input and an output
feedback component. The output feedback component camdsercivy any design that
exists in the literature. The design also allows the sclieglaf multiple similar controllers

based on linear models of the same structure.

e A tracking control design based on the helicopter nonlimyaamic model adopted by [47].
This design adopts the backstepping design principle folimear systems in feedback
form. The pseudo controls for each level of the feedbaclegystre appropriately chosen

to stabilize the overall helicopter dynamics. The pseudtrots combine nested saturation
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feedback laws and a novel control strategy for the stattidinaof the attitude dynamics.
One of the novelties of the proposed controller is its midistia design. By using advance
stability analysis concepts only the necessary pseudoadatms are included for the
stabilization of the system, which are significantly lesatlexisting backstepping designs.
Furthermore, apart from stabilizing the attitude dynarmics control design can guarantee
that the helicopter will not overturn for every allowed nefiece trajectory. The intense
theoretical analysis that is used for the derivation of thetiol design emerges important
concepts that should be accounted in the helicopter flightratbers. Such concepts involve
the expected range of the pitch and roll angles for aggressierence maneuvers and the

effects of the actuators saturation limits in the helicop&rformance.

A tracking controller based on the discretized nonlinedicbpter dynamics. The control
problem is set to the discrete time since time domain systiemtification is much simpler
and computationally efficient. In addition, the control@ithms are executed by micro-
processors, therefore, the discretization effect shoelddzounted by the controller. The
main contribution of the developed controller is the dedrgedom to the convergence rate
for each state variable of the cascade structure of the fefdtystem. This is of particular
interest since control of the convergence rate in each tdvble cascade structure provides
better flight results. The stability of the resulting dynas¢an be simply inspected by the
eigenvalues of a linear error without the necessity of Lymwts functions. The time do-

main identification takes place with a simple RLS algorithm.

Finally the the time-domain identification results can behfer improved if the discrete
nonlinear dynamics are represented by a Takagi-Sugenyg fystem. After the develop-
ment of the Takagi-Sugeno system, a standard RLS algorghmdd to estimate its pa-
rameters. The resulting fuzzy system is an interpolatomofinear discrete systems which

depends on the helicopter flight condition.
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11.2 Results and Real-Life Implementation

The linear tracking, the discrete backstepping and the Riitofluced in Chapter 6) controller
designs were successfully testeditPlaneflight simulator to a Raptor 90 SE RC helicopter.

An extensive comparison took place where each flight cdetralas expected to track several
aggressive and dexterous maneuvers. Although the lindiaopter model is theoretically limited
only in a neighborhood around hover, a single controlleedamly on the identified hover model
was adequate. The satisfactory performance of the PIDnésajtributed to the attenuated cross
coupling effects amongst tieaptor 90 SElynamics.

For a real-life application it is common engineering intuitto start with the less complex
approach. Therefore the first choice should be the PID cibeitwith the four SISO loops. If the
cross coupling effect among the system dynamics is signifiteen the MIMO linear tracking
controller should be adopted. Finally, if the linear coliénofails to achieve tracking in a wide

range of the flight envelope then the nonlinear scheme shomubbplied.

11.3 Future Work

Additional features can be incorporated to the proposettaiter designs for their reliable

implementation to actual small scale helicopter platforfgure work involves:

e The helicopter dynamics are characterized by significararpatric and model uncertainty.
The proposed controllers are proven to be significantly sblda all the designs the cer-
tainty equivalence principle was adopted. According ta the identified model is con-
sidered by the control engineer as the actual helicoptereinédtheoretical framework
that examines the uncertainty effects to the controllefoperance would be an important

contribution to the flight control design problem.
e Most controller designs neglect the coupling between ®ered moments. Therefore, only

practical stability of the helicopter can be achieved basethe approximated models.

227

www.manaraa.com



An interesting research avenue would be to theoreticalighysthe boundedness and error

margins introduced by the approximate models.

¢ In real-life applications the measured sensor signalshédgignificant noise levels which
are further deteriorated by the helicopter’s engine vibrat The consequences of noise

and the implementation effects of Kalman filtering to thetoolier design should be further

analyzed.
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Appendix A: Backstepping Control

This Appendix provides a mathematical background of thansee backstepping control
method. The presented material is a summary of more det@dsckiptions that can be found in
[43, 49]. Lyapunov-based controller design can be sysiesilgt tackled by a recursive design
procedure called backstepping. Backstepping is suitalnlstfict-feedback systems which are also

known as “lower triangular”. An example of a strict-feedbaystems is:

& = fil&) + g1(6)&
€2 = fo(€1,&2) + g2(61, £2)E3

(A1)
Er1 = fro1(61,60, Erm1) + gro1 (61,60, Er1)Er
& = fr(&1, &2, &) + 90 (61, 6y &)

whereéy, ..., & € Randu € Ris the control input. A typical feedback linearization apgch
in most cases leads to cancellation of useful nonlineariBackstepping design exhibit more
flexibility compared to feedback linearization since theynibt require that the resulting input-
output dynamics to be linear. Cancellation of potentiakbeful nonlinearities can be avoided
resulting to less complex controllers.

The main idea is to use some of the state state variables bf §4.“virtual controls” or “pseudo
controls”, and depending on the dynamics of each state miasigrmediate control laws. The
backstepping design is a recursive procedure where a Lyadunction is developed for the
entire system. The Lyapunov function can guarantee thaiwbell dynamics are uniformly glob-
ally stable. The recursive procedure can be easily expaindedthe nominal case of a system
augmented by an integrator. This case study is also refesrasl integrator backstepping. Based

on the design principles of the integrator backstepping ctintrol design can be easily expanded
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Appendix A: (continued)

for the case of strict-feedback systems given by (A.1). Miaeicular, consider the system:

n=fmn+gno (A.2)

c=u (A.3)

where[n ¢]7 € R"*!is the state vector and € R is the control input. The objective is the
design of a state feedback control law such that — 0 ast — oo. Itis assumed that both
andg are known. This system can be viewed as a cascade connettiso components. The first
component is (A.2) witlr as input and the second component is the integrator (A.3.nfd&in
design idea is to treat as a virtual control input for the stabilization of Assume that there exist

a smooth state feedback control law= ¢(n), with ¢(0) = 0; such that the origin of:

n=rfmn+gmnen) (A.4)

is asymptotically stable. Assume that for the choice@f) we know a Lyapunov functio’ (n)

such that:

S+ gmeln)] < W), e R (A5)

whereW (n) is positive definite. By adding and subtractia@;)#(n) on the right hand side of
(A.2), one has:

n=fn)+gmnle — é(n)] (A.6)

5 =u (A.7)
Denote bye, the error between the stateand the pseudo contrgl(n), that is:

€o =0 —¢(n) (A.8)
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Appendix A: (continued)

Writing the initial system in thén, e,,) coordinates, one has:

n=1[fm)+gmen)] +gnes (A.9)

éo =u— ¢(n) (A.10)

Sincef, g and¢ are known, one of the advantages of the backstepping destfatiit does not

require a diffrentiator. In particular, the derivativecan be computed by using the expression:

¢ = g—ﬁ [f(n) + g(n)o] (A.11)

Settingu = v + ¢, wherev € R is a nominal control input, the transformed system takegdtra:

n=1[fm)+gmen)] +gnes (A.12)

o =0 (A.13)

which is similar to the initial system, except that now thetfcomponent has an asymptotically
stable origin when the input is zero. Using this proceduegpdeudo contrab(n) has been “back
stepped” through the integrator from= v + ¢(n). The knowledge o¥/(n) is exploited in the

design ofv for the stabilization of the overall system. Using:

e (A.14)

N

Ve(n,o) =V (n) +

as a Lyapunov function candidate, we obtain:

v, = %[f@) T glm)dlm)] + %gmm ey

< -Wn) + 5-9n)es + egv (A.15)
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Appendix A: (continued)

The control inputy is chosen as:

ov
v= o (n) — keg, k>0 (A.16)

Substituting the above choice oto (A.15), one has:

Ve < =W(n) — ke (A.17)

o

which shows that the origify) = 0, ¢, = 0) is asymptotically stable. Sineg0) = 0, ande, — 0
ast — oo; then the origin(n = 0,0 = 0) is asymptotically stable as well. Substituting fore,,,

anqu, the final form of the control law is:

= g—ﬁ[f(n) +g(n)a] — ?9—‘;9(77) — k[o — ¢(n)] (A.18)
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